

User Manual

User Manual 2

 © 2017 Actifsource AG, Switzerland - all rights reserved.

 Actifsource User Manual

Notation To do
 Information

• Bold: Terms from actifsource or other technologies and tools

• Bold underlined: actifsource Resources

• Underlined: User Resources

• UnderlinedItalics: Resource Functions

• Monospaced: User input

• Italics: Important terms in current situation

Disclaimer The authors do not accept any liability arising out of the application or use of
any information or equipment described herein. The information contained
within this document is by its very nature incomplete. Therefore the authors
accept no responsibility for the precise accuracy of the documentation con-
tained herein. It should be used rather as a guide and starting point.

Contact Actifsource AG
Twärfallenstrasse 3
6313 Finstersee
Switzerland
www.actifsource.com

Trademark Actifsource is a registered trademark of Actifsource AG in Switzerland, the EU,
USA, and China. Other names appearing on the site may be trademarks of
their respective owners.

Revision • 2014/01/14 [rc] 5.11.0

• 2014/02/14 [rc] 5.12.0

• 2014/02/19 [rc] 5.13.0

• 2014/03/28 [rc] 5.13.1

• 2014/04/02 [rc] 5.14.0 (Template Editor)

• 2014/04/15 [rc] 5.14.0 (Accessing the model from within Java function)

• 2014/12/23 [sw] Code Snippet Chapter

• 2015/03/23 [sw] Java (List) Functions

• 2015/05/01 [ms] Java API

• 2017/03/30 [gr] Generic Import Wizard

• 2017/04/20 [gr] Generic Import Wizard Long Support

• 2019/05/29 [gr] Context Sensitive Help

http://www.actifsource.com/

User Manual 3

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Table of Content

1 Overview .. 10

1.1 Working with models... 10

1.2 Resource .. 12

1.3 Getting started .. 12

2 Actifsource Environment .. 13

2.1 Actifsource Eclipse Plugin .. 13

2.2 Memory Usage .. 13

2.3 Perspectives ... 15

2.4 Actifsource Preferences ... 15

2.4.1 Statistics .. 15

2.4.2 Generator .. 16

2.4.3 Style Configuration .. 16

2.4.4 Validator .. 17

2.5 Project Wizard ... 17

2.5.1 Project Name and Location ... 17

2.5.2 Resource Paths .. 18

2.5.3 Target Folder ... 19

2.5.4 Template Folders ... 20

2.5.5 Project Dependencies ... 21

2.5.6 Built-in Dependencies ... 21

2.6 Project Properties .. 22

2.7 Standard Package Structure .. 22

2.8 Project Menu ... 23

2.9 Toolbar ... 24

2.9.1 New Actifsource Resource .. 24

2.9.2 Open Actifsource Resource ... 24

2.10 Project Explorer ... 24

2.10.1 Link with Editor ... 25

2.10.2 Actifsource Presentation .. 25

2.10.3 Package Presentation ... 26

2.10.4 Drag and Drop ... 27

2.11 Project Explorer Context Menu ... 27

2.11.1 New Dialog .. 27

2.11.2 Open with ... 28

2.11.3 Rename Resources and Packages ... 29

2.11.4 Generic Refactoring .. 29

User Manual 4

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2.11.5 Compare With ... 30

2.11.6 Show Resource Dependencies .. 30

2.11.7 Sort Property ... 31

2.12 Actifsource Views .. 31

2.12.1 AQL Query ... 31

2.12.2 Hierarchy ... 32

2.12.3 Model Inconsistencies .. 32

2.12.4 Model Navigator ... 32

2.12.5 Protected Regions ... 32

2.12.6 References .. 33

3 Resource Editor .. 34

3.1 Overview .. 34

3.1.1 Aggregated vs. Referenced Resource .. 34

3.1.2 Property... 34

3.1.3 Open/Close Folding ... 35

3.1.4 The typeOf Statement ... 35

3.2 Read Only View .. 36

3.3 Breadcrumb ... 36

3.3.1 Navigating resources ... 37

3.3.2 Focusing aggregated resources ... 37

3.4 Browse resource .. 38

3.5 Insert resource ... 38

3.5.1 Insert on the empty line .. 38

3.5.2 Insert before or after properties ... 39

3.6 Reference resource.. 40

3.7 New referenced resource .. 41

3.8 Move resource ... 41

3.9 Sort property ... 42

3.10 Quick Assist .. 42

4 Core Model (Meta Meta-Model) .. 44

4.1 Overview .. 44

4.2 Resource .. 44

4.3 Class ... 45

4.4 Property ... 45

4.4.1 Property... 46

4.4.2 Relation ... 47

4.4.3 Extends .. 47

User Manual 5

 © 2017 Actifsource AG, Switzerland - all rights reserved.

4.4.4 UseRelation ... 48

4.4.5 OwnRelation .. 49

4.4.6 DecoratingRelation .. 50

4.4.7 SelectorRelation .. 53

4.4.8 Attribute .. 54

4.5 AbstractType .. 55

4.6 Core Resources .. 55

4.6.1 ch.actifsource.core.Class ... 55

4.6.2 ch.actifsource.core.Enum .. 57

5 Diagram Editor.. 59

5.1 Overview .. 59

5.2 Class Diagram Editor .. 59

5.2.1 New Class Diagram .. 59

5.2.2 Palette ... 59

5.2.3 Drag and Drop ... 62

5.2.4 Context Menu.. 63

5.2.5 Class Context Menu ... 63

5.2.6 Browse Resource ... 65

5.3 Domain Diagram Editor ... 66

5.3.1 New Domain Diagram ... 66

5.3.2 New Domain Diagram for Resource .. 69

5.3.3 Palette ... 70

5.3.4 Drag and Drop ... 71

5.3.5 Context Menu.. 72

5.3.6 Browse Resource ... 74

5.3.7 Browse Diagram .. 75

6 Domain Diagram Type .. 76

6.1 Overview .. 76

6.2 Shape ... 76

6.3 Figure ... 76

7 Build Config .. 77

7.1 Overview .. 77

7.2 New BuildConfig .. 77

7.3 BuildConfig and TargetFolder .. 78

7.4 Output Encoding .. 79

7.5 Line Break .. 80

7.6 BuildTask .. 81

User Manual 6

 © 2017 Actifsource AG, Switzerland - all rights reserved.

7.6.1 Template Generator Task .. 82

7.6.2 NestedBuildConfigGeneratorTask ... 83

7.6.3 CopyTask ... 83

7.6.4 DeleteFolderTask ... 84

7.6.5 ExecuteProcessBuildTask .. 85

7.6.6 GraphvizBuiltTask .. 86

7.7 Eclipse Builder ... 86

8 Template Editor .. 88

8.1 Overview .. 88

8.2 New Template ... 88

8.2.1 Create a template based on type .. 88

8.2.2 Create a Build.once Template ... 91

8.3 Writing template code ... 93

8.3.1 Base Context ... 93

8.3.2 File Line ... 93

8.3.3 Language Line .. 95

8.3.4 File Tab .. 96

8.3.5 SuperContext ... 97

8.3.6 Writing Code ... 99

8.3.7 Using type names in the template code.. 101

8.3.8 Open Link .. 102

8.3.9 Line Context, Column Context, Protected Context ... 102

8.3.10 Working with Contexts ... 106

8.3.11 Copy/Paste .. 113

8.3.12 Selector ... 115

8.3.13 Line Attributes .. 117

8.3.14 Column Attributes ... 118

8.3.15 FunctionSpace ... 120

8.3.16 Extract Function .. 121

8.3.17 Context Path ... 122

8.4 Declaring a Programming Language .. 124

8.4.1 Supported Programming Languages ... 124

8.4.2 TemplateLanguage Model ... 125

8.4.3 File Extension Priority Rules .. 126

9 Functions .. 127

9.1 Overview .. 127

9.2 Function Space... 127

User Manual 7

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.2.1 Function Parameters ... 127

9.2.2 Using function parameters in a java function (see Chapter 9.3.3 SelectorFunction 128

9.2.3 Polymorphic calls... 134

9.2.4 Non-Polymorphic calls ... 134

9.2.5 Extends .. 135

9.3 Function types ... 136

9.3.1 Abstract Function .. 137

9.3.2 SelectorFunction ... 137

9.3.3 JavaFunction .. 143

9.3.4 JavaListFunction .. 147

9.3.5 JavaAspectFunction ... 147

9.3.6 TemplateFunction ... 148

9.3.7 TemplateLineFunction ... 150

9.4 Built-in functions ... 152

9.4.1 Built-in functions on Any ... 152

9.4.2 Built-in functions on Any List ... 152

9.4.3 Built-in functions on Resource .. 153

9.4.4 Built-in functions on List of Resource .. 153

9.4.5 Built-in functions on Literal ... 153

9.4.6 Built-in functions on IntegerLiteral. .. 153

9.4.7 Built-in functions on IntegerLiteral. .. 153

9.4.8 Built-in functions on BooleanLiteral .. 153

9.4.9 Built-in functions on List of Character ... 153

9.4.10 Built-in functions on List of Letter... 154

9.4.11 Built-in functions on TextLiteral .. 154

9.4.12 Built-in functions on StringLiteral ... 154

9.4.13 Built-in functions on Word .. 155

9.4.14 Built-in functions on Guid ... 155

9.4.15 Built-in functions on Build ... 155

9.4.16 Built-in functions on LinkSelector ... 155

9.4.17 Built-in functions on File ... 155

9.5 Accessing the model from within Java function .. 155

9.5.1 Model forward access ... 155

9.5.2 Model backward access .. 157

9.5.3 Function access ... 157

9.5.4 Built-in function access ... 157

9.5.5 Use the extension mechanism to access built-in functions on resources (see chapter 9.4.1 Built-in

functions on Any... 157

User Manual 8

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.5.6 Built-in functions on Any List ... 157

10 Code Snippets ... 159

10.1 Overview .. 159

10.2 Defining Code Snippet Relations ... 159

10.2.1 Language ... 161

10.2.2 Tokens ... 161

10.3 Input Languages ... 162

10.3.1 C- ... 162

10.3.2 CminusCondition ... 162

10.3.3 Text ... 163

10.4 Code Snippet Editor ... 163

10.4.1 Content Assist ... 164

10.4.2 Validation and Errors .. 166

10.5 Code Generation.. 167

10.5.1 Built-in Template Functions .. 167

10.5.2 Display Code Snippets in Diagrams ... 171

11 Java API ... 172

11.1 Select-Fassade ... 172

11.1.1 Select Functions for Property ... 172

11.1.2 Select Functions for Statement ... 172

11.1.3 Select Functions for Class ... 172

11.1.4 Select Functions for Resource ... 173

11.1.5 Select Functions for Extendable.. 174

11.1.6 Select Functions for (Resource, Property) .. 174

11.1.7 Select Functions for Package .. 175

11.1.8 Select Functions for Resource Scope .. 176

11.1.9 Additional Select Functions... 176

11.2 Update-Fassade ... 176

12 Context Sensitive Help ... 177

12.1 Table of Contents .. 178

12.2 Help Context .. 180

13 Generic Import Wizard ... 182

13.1 Import Wizard .. 186

14 Code Generator .. 190

14.1 Overview .. 190

15 Plugin Project ... 191

15.1 Overview .. 191

User Manual 9

 © 2017 Actifsource AG, Switzerland - all rights reserved.

User Manual 10

 © 2017 Actifsource AG, Switzerland - all rights reserved.

1 Overview

1.1 Working with models
Actifsource is a comprehensive design and code generator tool, covering all aspects of domain-driven software

development from domain analysis through to the design models, code generating, testing, refactoring and

maintenance.

Actifsource allows you to define your domain-specific software specification.

This software specification is also called domain model, or specific model. The domain model shall be inde-

pendent from any used technology (i.e. programming language, operating system, etc.).

As the domain model is domain-specific by definition, we need to specify the structure for every domain. This

task is done in the so called meta-model.

The meta-model is built upon concepts of the Actifsource core model (aka Meta Meta-Model). Note that the

core model is self-describing, i.e., it is the meta-model of itself.

User Manual 11

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To find an adequate meta-model, you need to analyze your business domain. If you like to create a Service

Oriented Architecture (SAO), your meta-model might will contain services. If you like to model state machines,

your meta-model will define states, event and transitions.

Note that the Meta-Model is an abstraction of your business domain, and defines the business classes and their

relationships.

As we do not know your meta-model in advance, we cannot generate any suitable code for you. This means,

that you have to define your own code templates according to the meta-model. Defining code templates is as

easy as writing normal code.

Since everything depends on the meta-model you have to start by analyzing your business domain. Once the

meta-model is defined, you are able to enter you domain specific software specification accordingly. Also tem-

plate code is written along the meta-model. From this three models (meta-model, domain model, code tem-

plate) your code is generated by the Actifsource code generator.

User Manual 12

 © 2017 Actifsource AG, Switzerland - all rights reserved.

1.2 Resource
Every model consists of so called resources. A resource is like an object and the most abstract entity from the

Actifsource core model. In fact, every model element is a resource.

Every resource is identified by a globally unique identifier (GUID) which is automatically assigned, if you create

a new resource. Therefore changing resource names never affects any relation between resources.

1.3 Getting started
To get started with Actifsource, we suggest our tutorials on the Actifsource web site. Please visit

http://www.actifsource.com/tutorials.

http://www.actifsource.com/tutorials

User Manual 13

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2 Actifsource Environment

2.1 Actifsource Eclipse Plugin
Actifsource is shipped as Eclipse Plugin. Please make sure to install Eclipse first. Choose Help/Install new Soft-

ware… to install Actifsource from one of the following Eclipse Update Sites:

• http://www.actifsource.com/updates (Community Edition)

• http://www.actifsource.com/updates-enterprise (Enterprise Edition: password protected)

If you are not familiar with the Eclipse environment, please consult the Actifsource Tutorial - Installing

Actifsource.

2.2 Memory Usage
The Actifsource technology allows you to track any keystroke in real-time. As a result of this feature the

memory consumption might be quite high for larger models. Make sure to adopt the memory given to Eclipse if

necessary in the eclipse.ini file in the Eclipse directory. We suggest at least 4 GB of ram.

To observe the memory while working with Actifsource enable Window/Preferences/General/Show heap sta-

tus.

http://www.actifsource.com/updates
http://www.actifsource.com/updates-enterprise

User Manual 14

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Make sure to enable Show Max Heap to track the maximum memory usage by using the context menu on the

heap status display.

User Manual 15

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2.3 Perspectives
Since Eclipse is a general software development tool, you must be able to select different perspectives. Make

sure that the Actifsource Perspective is selected when working with Actifsource.

2.4 Actifsource Preferences
The preferences dialog (Window/Preferences/Actifsource) provides the following configuration options.

2.4.1 Statistics

Selecting the Actifsource menu shows a statistic of the resources.

#Resources

The number of resources in the project.

User Manual 16

 © 2017 Actifsource AG, Switzerland - all rights reserved.

#RootResources

The number of root resources in the project. A root resource is a non-aggregated resource.

#Statements

The number of statements in the project. The statement declares three resources as follows: Subject-Predicate-

Object.

2.4.2 Generator

Always clear generator console before generate

Actifsource cleans the console output before generating code. This makes it easier to scroll to the top of the

output to find error messages.

2.4.3 Style Configuration

The style configuration let you define your own colors.

Profile

Shows all built-in and user-defined profiles.

User Manual 17

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Edit

Edit user-defined profiles. Note that you cannot edit built-in profiles.

Copy

Copy built-in or user-defined profiles. Use copy on a built-in profile to create a user-defined profile.

Remove

Removes user-defined profiles. Note that you cannot remove built-in profiles.

2.4.4 Validator

Revalidation Delay (ms)

Actifsource validates every keystroke. The validation might lead to a high CPU load for large models. For this

reason you can configure the delay between validations.

2.5 Project Wizard
The project wizard allows you to create a new Actifsource project from scratch. Select File/new/Actifsource

Project.

2.5.1 Project Name and Location

User Manual 18

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Project name

This is the name of the new project. We suggest that the project name is given in the eclipse-like manner:

com.company.project.subproject. Note that the dotted name automatically leads to a corresponding package

structure.

Location

This is the location of the project. The default location is in the workspace.

Working Set

You might add the project to an existing working set. A working set is a dedicated view to the projects of the

workspace.

2.5.2 Resource Paths

All Actifsource resources are saved in Resource Files with the ending .asr in an xml format. The resource path

defines where to find the model resources.

Add Resource Path

Adds a new resource path to the project.

Edit…

Edits an existing resource path.

Remove

Removes an existing resource path.

User Manual 19

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Generate javamodel

Actifsource builds internal Java classes to handle your model. Do not switch off this option unless you know

exactly what you do.

2.5.3 Target Folder

Generated code is written to target folders. You might specify any existing or new folder in your project as a

target folder.

Add Target Folder…

Adds a new target folder to your project.

Add Build Config

Adds a new build configuration to your target folder.

A build configuration is kind of a make file that tells actifsource which templates to build. If no build configura-

tion is defined, Actifsource automatically generates code for all templates from the current project, combined

with all matching resources from the current project (see Chapter 7 Build Config, see Chapter 8 Template Edi-

tor).

Add Package…

Adds a new package to your build configuration.

Code is only generated for matching resources found in the specified packages.

• com.actifsource.statemachine.specific.* (all resources in the package)

• com.actifsource.statemachine.specific.** (all resources in the package and its subpackages)

If no package is defined, Actifsource generates code for all matching resources found in all packages of the

current project.

User Manual 20

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Note that you need to reference packages from other projects explicitly. Set the project dependencies first

accordingly.

Add Resource…

Adds a single resource to your build configuration.

If no resource is defined, Actifsource generates code for all matching resources found in all packages of the

current project.

Note that you need to reference resources from other project explicitly. Set the project dependencies first (see

Chapter 2.5.5 Project Dependencies).

Edit…

Edits the current entry.

Remove

Removes the current entry.

Ignore Whitespaces

Actifsource calculates a checksum (MD5 hash) for every generated file. If this option is checked, Actifsource will

ignore whitespaces when calculating the checksum.

Execute Save Actions

Eclipse supports so called Save Actions after a file has been saved (i.e. code formatting). If this option is

checked, save actions are executed after generating the files.

2.5.4 Template Folders

This feature is for beta users and developers only and might be used to reference folders for templates of third

party products.

User Manual 21

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2.5.5 Project Dependencies

Use the project dependencies if you like to split your model in different Actifsource projects. Note that you

have to set the project dependencies, before you might reference packages and resources from other projects

in the target folder.

Add Project

Adds a new project dependency.

Edit…

Edits the current project dependency.

Remove

Removes the current project dependency.

2.5.6 Built-in Dependencies

User Manual 22

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Use the built-in dependencies to reference any Actifsource built-in models.

Built-In Description

CORE The Actifsource core model (do not remove)

DIAGRAM Domain Diagram

CIP Embedded real-time state engine

DEC Modelling I/O connection and scheduling for embedded systems

DOCUMENTATION_METAMODEL Creates meta-model documentation from class diagrams

JAVAMODEL Creates Java classes for model access (shipped with Core built-in)

GRAPHVIZ Generator for graphviz

WORKSPACE File/folder operations and generating Eclipse projects

DATATYPE Common data type meta-model

UML UML state engine and code generator

ECORE ECore meta-model

MODVIS Visualization and animation of domain diagrams in the web browser

FREEMARKER Generator for freemarker templates

XPAND Generator for xpand templates

Add Builtin

Adds a new built-in project dependency.

Edit…

Edits the current built-in project dependency.

Remove

Removes the current built-in project dependency.

2.6 Project Properties
All settings shown in Chapter 2.5 Project Wizard can be found in Project/Properties/Actifsource.

2.7 Standard Package Structure
We suggest the following package structure.

User Manual 23

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Generic

The generic package contains the meta-model.

Specific

The specific package contains the domain model.

Template

The template package contains the code templates.

2.8 Project Menu
Use the project menu to control the build system of Eclipse and Actifsource.

Build Automatically

If Build Automatically is switched on, Eclipse will build the project automatically after changed files have been

saved.

Actifsource also generates Java classes for internal use. Generating these internal classes is also switched off by

Build Automatically and you can’t expect Actifsource to work correctly. Therefore, please make sure that Build

Automatically is switched on.

Please make yourself familiar with the Eclipse Builder concept. See Project/Properties/Builders to see the active

builders for your project and their execution order (see Chapter 7.7 Eclipse Builder).

User Manual 24

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Generate Automatically

If Generate Automatically is switched on, Actifsource will generate code after saving changed files. If Generate

Automically is not switched on, you have to trigger code generation manually (Right-click on the Eclipse project

and select Generate Code).

Actifsource also generates Java classes for internal use. Generating these internal classes is not switched off by

Generate Automatically.

Enable External Builder

This feature is for beta users and developers only. Since Actifsource is developed by Actifsource, we must be

able to build ourselves with the current version. The external builder is compiled at development time and

ensures that every change in the Actifsource workspace affects the next code generation run.

2.9 Toolbar
The Actifsource toolbar provides you with two important tools.

2.9.1 New Actifsource Resource

The new resource tool lets you create a new Actifsource resource in the selected package. The new resource

tool only allows creating so called root classes. [REF]

2.9.2 Open Actifsource Resource

This tool shows all resources and allows filtering by name. Please note that this operation might be slow for a

large amount of resources.

2.10 Project Explorer
The project explorer let you access your resource files. Resources are stored as xml files and named by the

GUID (Globally Unique Identifier) of the resource. Since this format is incomprehensible for humans, the Pro-

ject Explorer shows the name for named resources.

User Manual 25

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2.10.1 Link with Editor

Switch on the option Link with Editor to synchronize the project explorer with the currently active editor.

2.10.2 Actifsource Presentation

Actifsource allows you to show aggregated resources sorted by relation or just by their occurrence in the con-

taining class.

Group Aggregation By Relation switched on

User Manual 26

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Group Aggregation By Relation switched off

2.10.3 Package Presentation

Flat Package Presentation

Using the flat package presentation, all packages are shown as a flat list.

Hierarchical Package Presentation

User Manual 27

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Using the hierarchical package presentation, the hierarchy is preserved. Note that folders which do not contain

files are shown flat anyhow. This might lead to problems if you like to add new files or folders in a collapsed

package. Just switch to the flat package presentation to solve this problem.

2.10.4 Drag and Drop

Use drag and drop to move resources between packages. All references to the resource are kept automatically.

2.11 Project Explorer Context Menu
The context menu of the project explorer supports several important operations on packages and resources.

2.11.1 New Dialog

The new/Actifsource dialog creates different types of actifsource files. For some types of resources, you can

create new resources based on existing resources.

New Actifsource Project

Creates a new Actifsource project in the current workspace with the project wizard, as shown in Chapter 2.5

Project Wizard.

New BuildConfig

Creates a new BuildConfig which can be referenced in target folders (see Chapter 2.5.3 Target Folder and Chap-

ter 7 Build Config).

New Class Diagram

Creates a new class diagram for UML-like Meta-Model design. The class diagram is the easiest way to create

Meta-Models.

New Diagram Type

Creates a new diagram type which defines a user specific domain diagram.

User Manual 28

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Creating a new diagram type on an existing class preselects this class as the RootClass.

New Domain Diagram

Creates a new domain diagram. Domain diagrams are based on diagram types.

Creating a domain diagram on an existing resource preselects this resource as the singleRoot. The diagram type

is automatically selected by the type of the singleRoot.

If no singleRoot is defined, it is created automatically with the type defined by the diagram type.

New FunctionSpace

Creates a new function space (see Chapter 9.2 Function Space).

New Package

Creates a new package.

New Resource

Creates a new resource of any type.

New Resource Folder

Creates a new resource folder (see Chapter 2.5.2 Resource Paths).

New Template

Creates a new code template (see Chapter Template Editor).

Creating a new template on an existing class preselects this class as the base type.

2.11.2 Open with

The Open with dialog forces eclipse to open files with a specific editor. The first element in the Open With list is

the default editor. Once opened with another than the default editor Eclipse reminds this setting when double

clicking the file to open. Just select Open With/Default Editor to restore the settings.

Actifsource supports the following editor types:

User Manual 29

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Resource Editor

The Actifsource Resource Editor is the standard editor which opens all types of Actifsource resources.

Class Diagram Editor

The Actifsource Class Diagram Editor opens resources of type ClassDiagram.

Domain Diagram Editor

The Actifsource Domain Diagram Editor opens resources of type DomainDiagram.

Template Editor

The Actifsource Template Editor opens resources of type Template.

2.11.3 Rename Resources and Packages

You may rename any resource or package via the context menu/rename or by pressing F2 (Windows).

2.11.4 Generic Refactoring

If you change your meta-model, any depending domain model might become invalid. Actifsource lets you regis-

ter a piece of Java code, which transforms all existing domain models to fit the new meta-model. [REF]

Actifsource also uses this feature intensely if there are changes in the core model (meta meta-model). Please

make sure to check the release notes to see if you need to run a Generic Refactoring after updating to a new

Actifsource Version.

User Manual 30

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2.11.5 Compare With

Working together in a team, you might have collisions when checking Actifsource resource files (.asr) into your

version control system (i.e. CVS, SVN, GIT etc.).

Actifsource lets you compare resources and resolve conflicts in the compare view of the Resource Editor.

2.11.6 Show Resource Dependencies

In the context menu of the selected resource you will find the following commands to show specific dependen-

cies.

Show Instances

Shows all instances of the selected resource. Note that a resource must be of type Class to have instances. See

also Chapter 2.12.2.

Show Types

Shows all types of the selected resource (typeof statement). See also Chapter 2.12.2.

Show Subclasses

Shows all sub classes of the selected resource (extend statement). Note that a resource must be of type Class

to have sub classes. See also Chapter 2.12.2.

Show Superclasses

Shows all super classes of the selected resource (extend statement). Note that a resource must be of type Class

to have super classes. See also Chapter 2.12.2.

Show References

Shows all resources that are referencing the selected resource. See also Chapter 2.12.6.

User Manual 31

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2.11.7 Sort Property

Sorts resources referenced by a relation. Note that you can sort according to any literal attribute (i.e. name).

Note that you have to switch on Group Aggregation By Relation (see Chapter 2.10.2 Actifsource Presentation)

to see the relations.

2.12 Actifsource Views

2.12.1 AQL Query

The Actifsource Query Language let you query the model.

[TODO]

User Manual 32

 © 2017 Actifsource AG, Switzerland - all rights reserved.

2.12.2 Hierarchy

Shows the hierarchy between resources.

2.12.3 Model Inconsistencies

Shows all model inconsistencies calculated by the validator. Make sure that this view is always visible to check

whether your model is valid or not. Note that the code generator could throw an exception if your model is

invalid.

2.12.4 Model Navigator

The model navigator shows all resources sorted by projects, packages and types. Use the model navigator to

find classes outside your project.

2.12.5 Protected Regions

User Manual 33

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Shows all protected regions from a generated file. Click on the entry to navigate to the protected region in the

selected file.

[REF]

2.12.6 References

Shows all references to a specific resource in the form Subject-Predicate-Object while object is the referenced

resource.

User Manual 34

 © 2017 Actifsource AG, Switzerland - all rights reserved.

3 Resource Editor

3.1 Overview
The Actifsource Resource Editor allows you to view and/or edit any Actifsource resource. Since everything is a

resource in Actifsource this is the most important editor.

The Actifsource Resource Editor shows resources as tree (similar to the Windows Explorer).

3.1.1 Aggregated vs. Referenced Resource

Actifsource distinguish between aggregated and referenced resources. An aggregated resource lives in the

context of the parent resource. Deleting the parent resource will delete all aggregated resources.

Referenced resource may live anywhere in the model and are just referenced. Delete the referencing class will

not affect the lifetime of the referenced resource.

3.1.2 Property

All information is grouped by properties (see also Chapter 0

Property). Actifsource distinguish the following property types.

User Manual 35

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Class Meaning

Property Base class for all properties

Relation Base class for all relations

OwnRelation Leads to aggregated resources (UML: Aggregation, Composition)

UseRelation Leads to referenced resources (UML: Association)

Attribute Primitive literals (String, Boolean, Integer, etc.)

3.1.3 Open/Close Folding

To work with large resources efficiently, Actifsource can expand or collapse aggregated resources.

Use the following possibilities to expand/collapse resources.

Device Action

Mouse Klick the [+] [-] sign

 DoubleClick the property

Context menu Open/Close Folding

Keyboard Enter (Open/Close Folding)
Backspace (Close Folding)

3.1.4 The typeOf Statement

The typeOf statement of a resource shows the instantiation relation and declares the type of this resource.

User Manual 36

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Actifsource only allows a typeOf relation to resources of type Class.

3.2 Read Only View

Deploying Actifsource Models as an Eclipse Plugin (see Chapter 15 Plugin Project) leads to a read only view of

the models. Models that are read-only are displayed in gray colors. Note that the Actifsource Core Model is

read-only for you.

3.3 Breadcrumb
The breadcrumb helps you navigating large resources.

User Manual 37

 © 2017 Actifsource AG, Switzerland - all rights reserved.

3.3.1 Navigating resources

Clicking on the arrow in the breadcrumb allows you navigating all resources from the same property.

3.3.2 Focusing aggregated resources

Clicking on a resource in the breadcrumb allows you to focus only on this aggregated resource. Use this feature

to work with large resource files.

User Manual 38

 © 2017 Actifsource AG, Switzerland - all rights reserved.

3.4 Browse resource
Actifsource allows you to browse any resource in any editor.

To browse any resources in actifsource use the following possibilities.

Device Action

Mouse Ctrl+LeftClick

Context menu Browse Into

Keyboard F3

3.5 Insert resource

3.5.1 Insert on the empty line

Actifsource shows an empty line for all properties which might have another instance (depends on the subject

cardinality; see Chapter 4.4.1 Property).

User Manual 39

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To insert a resources on the empty line use the following possibilities.

Device Action

Mouse Ctrl+DoubleLeftClick on the property

Context menu Insert here

Keyboard Enter

3.5.2 Insert before or after properties

Actifsource allows inserting resources before or after existing properties.

To insert an aggregated resource before or after an existing resource use the following possibilities.

Device Action

Mouse Ctrl+DoubleLeftClick to insert after the current resource

 Ctrl+Shift+DoubleLeftClick to before after the current resource

Context menu Insert after to insert after the current resource

 Insert before to insert before the current resource

Keyboard Ctrl+Enter to insert after the current resource

User Manual 40

 © 2017 Actifsource AG, Switzerland - all rights reserved.

 Ctrl+Shift+Enter to insert before the current resource

3.6 Reference resource

To reference any resource use the content assist. Note that Actifsource supports content assist in many differ-

ent situations. Just try Ctrl+Space to activate content assist via keyboard.

Device Action

Context menu Open Content Assist

Keyboard Ctrl+Space

You may also type some letters to filter the resources.

User Manual 41

 © 2017 Actifsource AG, Switzerland - all rights reserved.

3.7 New referenced resource
You are able to create new referenced resources just by typing the named and select new from the content

assist.

The place where the resource is created depends on the UseRangeRestrictionAspect (see Chapter 4.4.4 UseRe-

lation). If there is no UseRangeRestrictionAspect defined, the new resource is created in the same package as

the referencing resource.

3.8 Move resource
If you need to change the order you can simple move resources up and down within the same property.

User Manual 42

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To move resources up and down use the following possibilities.

Device Action

Context menu Move Down

 Move Up

Keyboard Alt+CursorDown

 Alt+CursorUp

3.9 Sort property
Actifsource lets you sort all resources of the same property by any literal (i.e. name property). Note that the

sort algorithm is just applied once. Just call sort any time if needed.

3.10 Quick Assist
Sometimes Actifsource offers a quick assist to fix common issues. Hoover the mouse pointer over the light bulb

symbol to get a tooltip with a short description of the problem.

User Manual 43

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Click on the bulb symbol to get the possible solutions.

Device Action

Mouse Click on the bulb symbol

Keyboard Ctrl+1

User Manual 44

 © 2017 Actifsource AG, Switzerland - all rights reserved.

4 Core Model (Meta Meta-Model)

4.1 Overview
Every meta-model is based on the Actifsource Core Model. Make sure that you understand the concepts of

Resource, Class and Property before you start creating your own meta-model.

4.2 Resource
In Actifsource everything is a Resource. That means that every Resource you create extends the Resource.

Even Resource extends Resource, so that the core model can describe itself.

If the Resource shall has a name you can extend from NamedResource.

User Manual 45

 © 2017 Actifsource AG, Switzerland - all rights reserved.

4.3 Class
Creating your own meta-model you have to specify a set of classes and their relationships. The Core Model

therefore provides you a NamedResource called Class. Class is the only Resource in Actifsource that can be

instantiated where in this context we mean by instantiate that there is a typeOf relation. For that reason

Resource is of type Class and Class extends NamedResource.

This recursive definition becomes necessary as the Actifsource core model has to describe itself. You can say

that the Actifsource core model is meta-model of itself.

4.4 Property
Any information is modelled by a property. Specifying your own class therefore also means specifying all prop-

erties of this class.

There are different types of properties.

User Manual 46

 © 2017 Actifsource AG, Switzerland - all rights reserved.

4.4.1 Property

The property acts as an abstract base class. Please note that properties are fully typed. In Actifsource the type

of a property is named range.

Every resource that can be referenced by a range has to be of type AbstractType. One abstract type you al-

ready know by now is Class.

SubjectCardinality

The Property defines the subject cardinality which determines how many resources of type B can be referenced

by a resource of type A via relation b.

You may choose one of the following predefined cardinality instances.

User Manual 47

 © 2017 Actifsource AG, Switzerland - all rights reserved.

It is also possible to define any other cardinality just by specifying minCardinality and maxCardinality.

4.4.2 Relation

The relation acts as an abstract base class for any relation property between classes.

4.4.3 Extends

The relation extends allows you to define sub-properties of existing properties in a super class.

ASub.bSub extends A.b in the following example. That means that instances of ASub can have only references

to resources of type BSub while it is still possible to access the ASub.bSub resources via A.b as type of B.

It is also possible to have more than one sub-property that extends the same super-property, as long as the

sum of cardinalities of the sub-properties complies with the cardinality of the super-property.

User Manual 48

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Please note that is it only allowed to extend a property of the same type (i.e. UseRelation extends UseRelation,

OwnRelation extends OwnRelation).

ObjectCardinality

The Relation defines the object cardinality which determines how many resources of type A can reference a

resource of type B via relation b.

You may choose one of the following predefined cardinality instances.

4.4.4 UseRelation

The UseRelation (UML: Association) references another resource without affecting the lifetime of this re-

source. Deleting the referencing resource will not delete the referenced resource.

The range of UseRelation is AbstractType.

User Manual 49

 © 2017 Actifsource AG, Switzerland - all rights reserved.

UseRangeRestrictionAspect

You may want to restrict resources that can be referenced by a UseRelation depending on their context. Con-

sider a state machine where only target states of the own state machine shall be selected.

Let’s define a UseRangeRestriction aspect for Transition.state that allows only states of the own state machine.

Select the ResourceSelectorAspectImplementation for the easy to use Selector-Syntax (see Chapter 9.3.2 Sel-

ectorFunction) or the JavaAspectImplementation for a powerful Java implementation.

Starting from Transition navigating backwards via transition and state (note the minus sign for backward navi-

gation) to Statemachine where navigating forward to all States.

4.4.5 OwnRelation

The OwnRelation (UML: Aggregation, Composition) aggregates another resource. Deleting the aggregating

resource of type A will delete the referenced resources of type B.

User Manual 50

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Please note that you have to adjust the ObjectCardinality if B may be owned either from A1 or A2.

The range of OwnRelation is Class.

4.4.6 DecoratingRelation

Combining two existing models together is a very important task. Sometimes this is done by so called model

transformation. Actifsource chooses another way, because model transformation often only works in one di-

rection. Actifsource allows decorating existing resources with other ones. That means that we can add any

auxiliary information to already existing information. You will find out that this is a very powerful concept.

The DecoratingRelation allows building a homomorphism. A homomorphism is a structure-preserving map

between two structures. The word homomorphism comes from the ancient Greek language: ὁμός (homos)

meaning "same" and μορφή (morphe) meaning "shape".

Consider a resource A1 with a list b1 of resources of type B1. Consider a second List A2 that has a reference a1

to a resource of type A1. The decorating relation A2.b2 shall have 0..1 resources of type B2 for any resources

reached via A2.a1.b1.

User Manual 51

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The decorating relation A2.b2 needs a decorating aspect which defines where to find the resources that shall

be decorated.

Let us create a resource TestA1 of type A1 first.

User Manual 52

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Now let us create a resource TestA2 of type A2 with a reference to TestA1. Please note that A2.b2 is now deco-

rating A2.a1.b1 what is indicated by the brackets (i.e. b1[B1_1]).

Creating a decorated resource will automatically fill in the target property b1.

Please note that the decorating relation needs a subclass of type Decorator.

If your decorating relation does not point to a resource which fits the requirements Actifsource comes up with

a quick assist (see also Chapter 3.10 Quick Assist).

User Manual 53

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The quick assist extends the range of the decorating relation from Decorator and adds a sub relation to Deco-

rator.target with type of the target of your decorating aspect.

4.4.7 SelectorRelation

[TBD]

User Manual 54

 © 2017 Actifsource AG, Switzerland - all rights reserved.

4.4.8 Attribute

The Attribute allows creating simple literals. There are some predefined literal instances that you might use.

Please note that the range of an attribute is Literal where Literal is also an AbstractType as already seen for

Class (see Chapter 4.4.1 Property).

BooelanLiteral

The Boolean literal allows the values true or false only.

DoubleLiteral

The double literal is a 64 bit floating point value.

IntegerLiteral

The integer literal is a 32 bit integral value.

LongLiteral

The long literal is a 64 bit integral value.

StringLiteral

The string literal is a single-line string value.

TextLiteral

The text literal is a multi-line string value.

ScopePathLiteral

The scope literal allows referencing any file in the current project.

JavaTypeLiteral

The Java type literal allows referencing a Java class or interface.

JavaClassLiteral

The Java type literal allows referencing a Java class.

JavaInterfaceLiteral

The Java type literal allows referencing a Java interface.

User Manual 55

 © 2017 Actifsource AG, Switzerland - all rights reserved.

4.5 AbstractType

As we have seen before, Class and Literal both extend AbstractType. Furthermore, AbstractLiteral is of type

Literal and Resource is of type Class. To complete this picture, we can add Any which is of type AbstractType.

4.6 Core Resources
The Actifsource Core provides a set of resources that allows you to build your own meta-model. The most im-

portant resources are Class with its Properties and Enum.

4.6.1 ch.actifsource.core.Class

User Manual 56

 © 2017 Actifsource AG, Switzerland - all rights reserved.

typeOf

To act as a class a resource has to be of type Class. To be type something of means to be an instance of some-

thing.

comment

The comment text literal let you comment your classes and literals. Comments are shown in tooltips when

hovering the mouse pointer over class and property names. Note that the comment property is inherited by

extending from Commentable.

Extending from Commentable allows writing comment for any resource and activates the tooltip functionality.

aspect[InitializationAspect]

The initialization aspect initializes a resource during creation. To be provided as Java class.

aspect[ResourceValidationAspect]

The resource validation aspect defines specific validation rules for a resource. To be provided as Java class.

aspect[NameAspect]

The name aspect defines the name of a resource. To be provided as Java class or in the simple selector syntax.

Note that you might define a selector aspect pointing to a TemplateFunction (see Chapter 9.3.6 TemplateFunc-

tion) or a TemplateLineFunction (see Chapter 9.3.7 TemplateLineFunction).

extends

Defines the base class and inherits all properties when instantiating.

modifier

The modifier defines if a class can be instantiated or sub classed.

Modifier Description

Abstract No instance allowed of this class.

Final No subclass allowed of this class.

property

Defines the property of this class. Properties carry the data when instantiating the class. Choose the property

type you need (see also Chapter 0

Property).

User Manual 57

 © 2017 Actifsource AG, Switzerland - all rights reserved.

definesAspect

Defines aspects for instances of this class (see also aspect[InitializationAspect], as-

pect[ResourceValidationAspect], aspect[NameAspect] which are defined in the aspect property of the class

Class.

allowRoot

A Class is a root class if it is not aggregated exclusively (that mean owned by an ownRelation with ObjectCardi-

nality1_1). Set this flag to true or false if you want to overwrite the Actifsource logic.

Please note that only root classes can be created directly via the New Actifsource Resource Tool (see Chapter

2.9.1 New Actifsource Resource).

classIcon

Sets an icon for this class and all instances. You can select an icon project by using content assist to browse the

current project. The icon size shall be 16 x 16 pixels.

lineColor

Deprecated.

fillColor

Deprecated.

shape

Deprecated.

4.6.2 ch.actifsource.core.Enum

The enum is a class with a set of values.

User Manual 58

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Value

Technically the value is an instance of the enum and therefore fully typed. Note that you might define proper-

ties in your enum which are than accessible in the values.

User Manual 59

 © 2017 Actifsource AG, Switzerland - all rights reserved.

5 Diagram Editor

5.1 Overview
Actifsource offers graphical editors to view and edit the meta-model and model. For editing the model it is

possible to define domain-specific editors.

5.2 Class Diagram Editor
The class diagram editor allows you to create new meta-models based on Actifsource classes.

5.2.1 New Class Diagram

You can create a new class diagram via context menu in the project explorer or File/New.

Preselecting a package will directly fill in the resource path and package in the wizard.

5.2.2 Palette

Use the palette to edit your diagram.

User Manual 60

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Select

Selects one or many classes from the diagram. Use Ctrl+Click for multi select.

Marquee

Selects classes from the diagram within a rectangle.

Extension

Derives a class from another class by adding a Class.extend statement in the sub class.

Note that are special rules for your convenience. Consider creating two new Classes MyClass and MySubClass.

Both are extending NamedResource by default.

Inserting an extends-relation from MySubClass to MyClass would add an extends-relation from MySubClass to

MyClass as expected. At the same time the extends-relation from MySubSubClass to NamedResource is re-

moved because MyClass already extends NamedResource.

The same rule also applies when extending from Resource.

User Manual 61

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Relation

Inserts a relation from a class to another. Select one of the relation types or a base relation. Selecting a base

relation automatically selects the relation type needed (see Chapter 0

Property).

Note

Connects class to any note. See also New Note.

New Class

Inserts a new class on the diagram and in the model. Note that the preselected namespace (package and/or

containing resource) is the same as the package of the class diagram.

Note that you can directly select the super class in this dialog. While NamedResource is the default you may

select Resource to create an unnamed resource, or any other Class.

For other properties see also Chapter 4.6.1 ch.actifsource.core.Class.

User Manual 62

 © 2017 Actifsource AG, Switzerland - all rights reserved.

New Enum

Inserts a new enum on the diagram and in the model. For other properties see also Chapter 4.6.2

ch.actifsource.core.Enum.

New Note

Inserts a new note on the diagram. Click on the first text line of the note to enter the edit mode.

5.2.3 Drag and Drop

Use the drag and drop feature from the project explorer to add an existing class to your diagram.

User Manual 63

 © 2017 Actifsource AG, Switzerland - all rights reserved.

5.2.4 Context Menu

Use the context menu on the diagram background.

Show

Shows any existing resource in the scope of your project. Use this feature to insert resources from third party

or Actifsource models to your diagram (i.e. Actifsource Core Model).

5.2.5 Class Context Menu

Use the content menu on any class.

User Manual 64

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Delete from Diagram

Deletes this class from the diagram only but not from the model. Use Delete on the keyboard to delete select-

ed classes from the diagram.

Delete from Model

Deletes this class from the diagram and from the model. Use Shift+Delete on the keyboard to delete selected

classes from the diagram and from the model.

Show Attributes

Shows attributes (literals) in an UML-like style.

Hide Attributes

Hides shown attribute (see also Show Attributes).

User Manual 65

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Instances

Inserts instances of a specific class on the diagram.

Types

Shows the types (Class.typeOf statement) of a specific class.

Super Class

Shows the superclass (Class.extend statement) of a specific class. You this feature repeatedly to show the in-

heritance hierarchy.

5.2.6 Browse Resource

Open any class in the resource editor by Ctrl+Click on the class name.

User Manual 66

 © 2017 Actifsource AG, Switzerland - all rights reserved.

5.3 Domain Diagram Editor
The domain diagram editor allows you to create new models based on your meta-model.

5.3.1 New Domain Diagram

You can create a new class diagram via context menu in the project explorer or File/New.

Preselecting a package will directly fill in the resource path and package in the wizard.

Name

The name of the domain diagram.

User Manual 67

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Diagram Type

Every domain uses its own diagram styles. The DiagramType lets you define your domain-specific domain dia-

grams (see Chapter 6 Domain Diagram Type).

If there is no diagram type defined, the diagram editor has a default behavior and shows resources and their

relationships (use and own relation, dependencies).

As a very simple example, let us define a diagram type for a state machine meta-model.

As the root class (see also Single Root) we choose Statemachine. This means that we can only edit elements

that are part of the state machine.

The allowed class is State since we like to edit states. Between states there are transitions. A Transition is an

indirect relation from State via Transition to State.

User Manual 68

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The minimal diagram type shown above leads to a domain specific state event diagram.

User Manual 69

 © 2017 Actifsource AG, Switzerland - all rights reserved.

SingleRoot

If there is a single root defined, every resource is created in the context of the single root. If no single root is

defined, resources are created in the same package as the domain diagram.

Note that defining a rootClass in the DiagramType demands for a singleRoot in the domain diagram.

5.3.2 New Domain Diagram for Resource

You can create a new domain diagram for a single root directly by calling New/Domain Diagram on a resource.

Note that the single root is preselected in the wizard and the diagram type is automatically detected if there is

a diagram type which has a root class of the same type as the chosen single root.

User Manual 70

 © 2017 Actifsource AG, Switzerland - all rights reserved.

5.3.3 Palette

Use the palette to edit the domain diagram.

Select

Selects one or many classes from the diagram. Use Ctrl+Click for multi select.

Edit

Edits figures with a FigureEditableLabelSelector.

[REF]

Note that you can also enter the edit mode with the Select tool. Click on the text to alter – wait for one second

until the cursor changes to text mode – and click again.

Marquee

Selects classes from the diagram within a rectangle.

Relation

Inserts a relation from a resource to another.

Resources

Inserts a new resource on the diagram and in the model. Note that you control the palette by Al-

lowedClass.paletteEntry in your diagram type.

User Manual 71

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Search

Searches allowed classes with a defined search path.

[REF]

5.3.4 Drag and Drop

Use the drag and drop feature from the project explorer to add an existing resource to your diagram.

User Manual 72

 © 2017 Actifsource AG, Switzerland - all rights reserved.

5.3.5 Context Menu

Delete from Model

Deletes this resource from the diagram and from the model. Use Shift+Delete on the keyboard to delete se-

lected resources from the diagram and from the model.

Hide Resource

Deletes this resource from the diagram but not from the model. Use Delete on the keyboard to hide selected

resources from the diagram.

User Manual 73

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Show Resource

Shows any hidden resource in the scope of the selected resource. If this action is called on the background of

the diagram, the scope is your single root.

Show/Hide Resource Parts

Shows or hides aggregated parts (see Chapter 4.4.5 OwnRelation).

Router

Selects between different routing algorithms.

Router Description Image

User Manual 74

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Default Manual routing by dragging the line on
the drag points.

Manhatten Lines are routed with 90° angles.

NoIntersection As few intersections as possible.

5.3.6 Browse Resource

Open any class in the resource editor by Ctrl+Click on the class name.

User Manual 75

 © 2017 Actifsource AG, Switzerland - all rights reserved.

5.3.7 Browse Diagram

Actifsource automatically detects resources that are also shown on other diagrams. Simply click on the diagram

symbol to list and browse the other diagrams.

User Manual 76

 © 2017 Actifsource AG, Switzerland - all rights reserved.

6 Domain Diagram Type

6.1 Overview
Domain diagrams are domain-specific by definition. This means that you can define your own domain-specific

diagrams.

6.2 Shape

6.3 Figure

User Manual 77

 © 2017 Actifsource AG, Switzerland - all rights reserved.

7 Build Config

7.1 Overview
The Actifsource BuildConfig acts like a make file. It tells Actifsource which build tasks shall be executed. The

most important build task for code generation is the TemplateGeneratorTask.

7.2 New BuildConfig
You can create a new build configuration via context menu in the project explorer or File/New.

Actifsource suggests adding templates to the build configuration which are not assigned to any other build

configuration yet.

User Manual 78

 © 2017 Actifsource AG, Switzerland - all rights reserved.

For every selected template, Actifsource creates a so called a TemplateGeneratorTask as shown below.

7.3 BuildConfig and TargetFolder
Build configurations have to be registered with target folders to take any effect (see also Chapter 2.5.3 Target

Folder and Chapter 2.6 Project Properties).

User Manual 79

 © 2017 Actifsource AG, Switzerland - all rights reserved.

7.4 Output Encoding
For every build configuration you may select the output encoding.

If no output encoding has been set, the one from the parent build configuration (see also Chapter 7.6.2 Nest-

edBuildConfigGeneratorTask), folder, parent folder, project, or workspace is taken (in this order).

Check Properties/Resource/Text file encoding on folder or project.

User Manual 80

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Check Window/Preferences/General/Workspace/Text file encoding on workspace.

7.5 Line Break
For every build configuration you may select the line break style.

User Manual 81

 © 2017 Actifsource AG, Switzerland - all rights reserved.

If no line break has been set, the one from the parent build configuration (see also Chapter 7.6.2 NestedBuild-

ConfigGeneratorTask), project, or workspace is taken.

7.6 BuildTask
The build configuration lists all build tasks. Build tasks are executed in the order as listed. There are different

types of build tasks. The most important one is the TemplateGeneratorTask.

User Manual 82

 © 2017 Actifsource AG, Switzerland - all rights reserved.

7.6.1 Template Generator Task

The template generator task defines which templates have to be built.

Template

References the template.

Omit File Id

Actifsource normally inserts an id at the end of every generated file. This file id helps identify and track gener-

ated code.

The Actifsource ID is assembled as follows.

/* Actifsource ID=[TemplateGUID,SuperContextGUID*,BaseContextGUID,MD5Hash] */

Element Descriptiom

Comment Tags The comment tags (i.e. /* */) are given by the language

Actifsource ID Static identifier

TemplateGUID GUID of the template which created this file

SuperContextGUID GUID of the resources which contains the base resource

BaseContextGUID GUID of the base resources of this file

MD5Hash A hash code over the generated code but not including protected regions to
detect if the generated code has been changed manually. To ignore white
spaces when building the MD5 hash check Chapter 2.5.3 Target Folder.

User Manual 83

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Note that you can open the resource for any GUID in an Eclipse text editor or in the Eclipse console by

Ctrl+Click on the GUID.

7.6.2 NestedBuildConfigGeneratorTask

The nested build configurator task let you reference and execute existing build configurations.

Build Config

References any existing build configuration.

Target Sub Path

Defines a sub path to the target folder (see also Chapter 2.5.3 Target Folder).

7.6.3 CopyTask

Copies a file or a folder to a specified target path. Please note that this tasks needs a built-in dependency to

WORKSPACE (see Chapter 2.5.6 Built-in Dependencies).

User Manual 84

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Resource

The file or folder to copy. There are different resource types.

Resource Type Description

BundleResource File or folders found in a bundle (plugin project).

OutputScopeResource File or folders found in the target folder.

TemplateScopeResource File or folders found in the template folder.

WorkspaceResource File or folders found in the workspace.

Recursive

All subfolders are copied if set to true.

Merge Duplicate Folders

When enabled, the generator allows merging content from different folders into one folder. Otherwise an error

will occur.

Target

The target to copy the files or folders. There are different target types.

Target Type Description

ResourcePathTarget Target path relative to copied resources.

ZipTarget File and folders are copied into a zip file.

7.6.4 DeleteFolderTask

Deletes the specified folders relative to the target folder. Please note that this tasks needs a built-in dependen-

cy to WORKSPACE (see Chapter 2.5.6 Built-in Dependencies).

User Manual 85

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Path

A path relative to the target folder.

7.6.5 ExecuteProcessBuildTask

Executes any process on your operating system. Please note that this tasks needs a built-in dependency to

WORKSPACE (see also Chapter 2.5.6 Built-in Dependencies).

To execute a shell command on windows, choose cmd as shell command, /c as first argument, and your shell

command and parameters as subsequent arguments.

Directory

Directory to execute the process relative to the target project.

Command

The command (without arguments) to execute.

Argument

The arguments of the command.

User Manual 86

 © 2017 Actifsource AG, Switzerland - all rights reserved.

7.6.6 GraphvizBuiltTask

Runs the graphviz dot command on all .dot files in the target folder. Please note that this tasks needs a built-in

dependency to GRAPHVIZ (see also Chapter 2.5.6 Built-in Dependencies).

Make sure that you have graphviz installed (see http://www.graphviz.org/) and reachable in your path.

Styleheet

A css stylesheet if needed.

Adapt Size

If set to true, the generated diagram's width is set to 100%.

7.7 Eclipse Builder
Eclipse supports so called Builders to build anything. In C/C++ there is the CDT Builder to build executables and

libraries from header and source files. In Java there is the Java Builder to build .class files from .java files.

In Actifsource there is the Actifsource Builder to generate code from the model (.asr files).

Make sure that the builders are arranged in the correct order. You will find the settings in Pro-

ject/Properties/Builder.

http://www.graphviz.org/

User Manual 87

 © 2017 Actifsource AG, Switzerland - all rights reserved.

User Manual 88

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8 Template Editor

8.1 Overview
As already seen in Chapter 1.1 Working with models, the Actifsource Template Editor allows you to write meta-

code based on the meta-model. Writing meta-code means to write code along the structures which are given

by the meta-model without knowing the specific domain model.

8.2 New Template
A template is either based on a type (Class, Enum) or not.

Template Type Description

Based on types Based on a type means that the Template is applied for every instance of that type.
The result is one file per instance.

Build once Build once means that the Template is applied exactly once. The result is one file.

8.2.1 Create a template based on type

Creating a template based on a specific type (Class) is the normal case. Consider a nested Parent-Child struc-

ture with the following meta-model.

For every specific parent-child structure there is at least a resource of type Parent to start with. So let’s start

writing meta-code based on the class Parent.

To create a template based on the class Parent simply choose New/Template from the context menu of the

class Parent.

User Manual 89

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The New Template Wizard helps to configure the template settings.

Set the options as needed.

User Manual 90

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Option Description

Resource Path The resource path where the template is located (see Chapter 18 Resource Paths).
This option is automatically filled in.

Package The package where the template is located. The package is derived from the location
where the context menu was called.

Template Name The name of the template. The template name is automatically derived from the Base
Type.

BuildConfig The build configuration where this template is referenced (see Chapter 7 Build Config).

MetaModel Make sure to choose Actifsource unless you know exactly what you do.

Base Type The base type is derived from the location where the context menu was called.

Please note that there is a short way for choosing the package. Just type the first few letters of a package fol-

lowed by a dot. Using content assist (Ctrl+Space) shows the matching packages.

Creating a template based on a type (i.e. class Parent) opens an editor with a predefined selector

Build.allParent. This means that this template is executed for all resources of type Parent.

User Manual 91

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.2.2 Create a Build.once Template

To create a Build.once template simply choose New/Template from the context menu of a package. Please

note that the template is created in the chosen package.

User Manual 92

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The New Template Wizard asks for the template name and even allows you to add a base type afterwards using

the content assist (Ctrl+Space). Adding a base type leads to a template based on a type (see Chapter 8.2.1 Crea-

te a template based on type).

Creating a Build.once template opens an editor with a predefined selector Build.once@BuiltIn. That means

that this template is executed only once.

User Manual 93

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3 Writing template code
Writing template code is nearly as easy as writing common code – thanks to the Actifsource Template Editor.

8.3.1 Base Context

The Actifsource Template Editor lets you write code in the context of the meta-model.

The orange bar on the left is the context you are in. Creating a template for the class Parent lets you work in

the context of this class.

The context derived from the base type (see Chapter 8.2.1 Create a template based on type) is called base

context.

8.3.2 File Line

First of all you have to specify a proper name. Since we want to generate a file for any instance of the class

Parent, we have to specify a file name that is unique for every Parent instance.

User Manual 94

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The name of the generated files is derived from the specific resource instance for which code is generated. Use

content assist (Ctrl+Space) to access the properties of the class which is bound to the base context by the Selec-

tor.

The following file name will create files named Parent.nameImpl.hpp while Parent.name is replaced by the

name of the specific instance of class Parent. Text elements referring to the model are called links and dis-

played underlined.

Please note that the file extension .hpp automatically selects the Language C++ (see Chapter 8.3.3 Language

Line and Chapter 8.4 Declaring a Programming Language).

It is also possible to define a folder structure in the file line. The generated files will be placed in the defined

folders.

User Manual 95

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.3 Language Line

The language line defines the programming language for

• Syntax Highlighting

• Comment Style

• String Style including escape rules

Actifsource defines the most common languages. If you are using a language which is not defined by default

(see Chapter 8.4.1 Supported Programming Languages), do not hesitate to create one by your own (see Chap-

ter 8.4 Declaring a Programming Language).

You may change the language at any time by using the content assist (Ctrl+Space) on the language line.

Selecting or changing a file extension in the file line (see Chapter 8.3.2 File Line) automatically selects the corre-

sponding language.

User Manual 96

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Use Ctrl+Click on the language to show the underlying language model (see Chapter 8.4 Declaring a Program-

ming Language).

8.3.4 File Tab

There are always situations where two or more files belong to each other (i.e. hpp/cpp in C++). Actifsource

therefore supports file tabs.

Just press the [+] button right next to the file tabs to add a new file tab. Note that files tabs are always auto-

matically named the same as the file extension.

User Manual 97

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Press the X button to delete the active file tab.

Press Ctrl+Tab to select next tab from within the code section.

8.3.5 SuperContext

Let’s assume that we want to generate a file for every Child instance.

For that reason we create a template with Child as base type.

User Manual 98

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Since Child is owned by Parent.child, Actifsource automatically provides you with a super context of type Par-

ent.

Please note that the base context (i.e. Child in this example) is the widest bar ().

User Manual 99

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.6 Writing Code

Let’s start writing code. First we write a C++ class named Parent.nameImpl while Parent.name is replaced by

the name of the specific instance of class Parent. Note that the keyword class is bold and has a special color as

defined in the language C++ (see Chapter 8.4 Declaring a Programming Language).

To insert a reference to the meta-model just use content assist (Ctrl+Space) at any time.

Underlined words are so called links which are directly linked with your model. Note that renaming resources in

the meta-model automatically renames all links in the template synchronously.

User Manual 100

 © 2017 Actifsource AG, Switzerland - all rights reserved.

You can always navigate to the corresponding resource in the model by using Ctrl+Click on the links as shown

below or the tool from the toolbar.

Saving the above template leads to one file for every resource of type Parent in your project.

User Manual 101

 © 2017 Actifsource AG, Switzerland - all rights reserved.

A build config is needed to work with resources from other projects (see Chapter 7 Build Config).

8.3.7 Using type names in the template code

Please note that you might insert type names directly in the template code by using the content assist

(Ctrl+Space). If the desired type name is not available, press Ctrl+Space again to get all available type names.

The type name is inserted just as given. The advantage of using type names in the template is the automatic

renaming if the name of the type is changed.

User Manual 102

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.8 Open Link

You can always open a resource link in the template editor.

Open Link with Default Editor

Use one of the following methods to open a link in the default editor (see Chapter 2.11.2 Open with).

Action Opens Description

Ctrl+Click Default Editor Press Ctrl+Click on the link to open the resource

F3 Default Editor Press F3 on the current cursor position to open the resource

Default Editor Click Open Link in ResourceEditor from the toolbar on the current cursor

position to open the resource

To open a function link in the function editor use the default editor. To open the function model use the re-

source editor (see below).

Open Link with Resource Editor

Use one of the following methods to open a link in the resource editor (see Chapter 2.11.2 Open with).

Action Opens Description

Ctrl+Alt+Click Resource Editor Press Ctrl+Click on the link to open the resource

Alt+F3 Resource Editor Press F3 on the current cursor position to open the resource

Resource Editor Click Open Link in ResourceEditor from the toolbar on the current cursor

position to open the resource

8.3.9 Line Context, Column Context, Protected Context

Actifsource knows three different types of contexts.

Line Context

The line context consists of one or more lines in a file. The text in the line context is repeated for any resource

reached by the selector (see chapter 8.3.10 Working with Context). To insert a line context use the Insert Line-

Context tool from the toolbar or press Alt+Insert.

User Manual 103

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Column Context

The column context consists of one or more columns of a line. The text in the column context is repeated for

any resource reached by the selector (see Chapter 8.3.10 Working with Context). To insert a column context

use the Insert ColumnContext tool from the toolbar or press Alt+Shift+Insert.

Protected Context

The protected context allows inserting so called protected regions into the generated files.

User Manual 104

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The content of the Protected Regions is saved before regenerating and inserted in the newly generated file. Use

Protected Regions to insert handwritten code into generated files.

Note that Protected Regions are identified by the GUID of the resource of the current context. Use Ctrl+Click on

the GUID to navigate to the corresponding resource.

User Manual 105

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The protected context consists of one or more lines in a file. The text in the protected context is repeated for

any resource reached by the selector (see Chapter 8.3.10 Working with Context) and generated. To insert a

protected context use the Insert ProtectedContext tool from the toolbar.

Note that you can control the GUIDs that identify the protected regions by checking the resources in the con-

text path. Just make sure that the resulting set of GUIDs is unique in your generated file. You might also define

a name for the Protected Region.

Please note that changing the name of the Protected Region or the involved resources leads to new Protected

Regions while the old once are moved to the end of the file.

User Manual 106

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.10 Working with Contexts

Adding and removing a context is one of the most important operations when working with the Template Edi-

tor.

Use the Template Editor Toolbar to add, remove or navigate contexts.

Context Operation Icon Shortcut Description

Select TopContext

Alt+Home Selects the top context

Select ParentContext

Alt+PgUp Selects the parent context from the actual context

Select ChildContext

Alt+PgDown Selects the child context from the actual context

Select BottomContext

Alt+End Selects the bottom context

Insert LineContext

Alt+Insert Inserts a line context in the actual context

Insert ColumnContext

Alt+Shift+Insert Inserts a column context in the actual context

Insert ProtectedContext

 Inserts a protected context in the actual context

Delete Context

Alt+Delete Delete the actual context

Navigate Context via Select Tools

Using the Context Select Tools in the Toolbar you might change the selection of the context from parent to

child and vice versa.

Navigate Context via Breadcrumb

A context can be selected by clicking on the Breadcrumb.

User Manual 107

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Navigate Context via Context Bar

A context can also be selected by clicking on the context bar.

Add Context

A new context is always added after the actually selected context. Navigate to a certain context before insert-

ing a new context as shown above.

Let’s assume that we want create a function identifyChild.name() for every child in the parent context. For that

reason we insert a new context using the Insert LineContext tool from the toolbar.

User Manual 108

 © 2017 Actifsource AG, Switzerland - all rights reserved.

As a second step you have to declare a selector (see Chapter 8.3.12 Selector) to define the context.

Since our base context is Parent, we have to traverse the relation Parent.child to reach all children from parent.

Choose the relation Parent.child for the selector using content assist (Ctrl+Space).

Using content assist in the new context you are now able to use links on resources of type Child.

To complete the task from above insert a function named identifyChild.name().

User Manual 109

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Line 4 is now repeated for any resource of type Child reached by the relation Parent.child.

Add Context via Quick-Assist

Using the quick assist is the most efficient way to add a new context.

To create a new context with the selector Parent.child just insert the link Parent.child using context assist

(Ctrl+Space). A light bulb indicates that there is a quick assist available. Click on the light bulb or press Ctrl+1

to open the quick assist.

User Manual 110

 © 2017 Actifsource AG, Switzerland - all rights reserved.

You are now allowed to create a line context or a column context directly with Parent.child as the selector.

A new context is inserted with the desired selector. Parent.child is automatically replaced by Child which is the

result of the selector.

User Manual 111

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Automatic Context growth

Adding new lines (pressing return) automatically lets the context grow.

Add Content between existing Contexts

Consider two contexts that follow each other (line 4 and 5 in the following example). How to insert new con-

tent between line 4 and line 5 but in the base context?

User Manual 112

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Place the cursor on the end of line 4 as shown above and press cursor right. The cursor will still remain at the

same position but the context selection will change to the parent context.

Entering a new line is done in the selected parent context and results in a new line between the existing con-

texts.

User Manual 113

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.11 Copy/Paste

Copy (Ctrl+C) and Paste (Ctrl+V) in the Template Editor has some special features to work with links and con-

texts.

Copy/Paste with Link

Links can be easily copied like text.

Copy/Paste with Context

The Copy action takes care on all nested contexts in the current context. The following situation won’t copy the

selected line context C on line 2 but the nested column context D.

User Manual 114

 © 2017 Actifsource AG, Switzerland - all rights reserved.

If you have to copy the line context C on line 2 just navigate to the base context (see Chapter 8.3.10 Working

with Contexts) what makes the line context a nested context.

There is also a command Copy with Context in the context menu which allows to specify the position from

which context are copied. The following situation shows a selection on line 2 where the copy operation allows

to copy with context C or B.

User Manual 115

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Please note that it makes no sense to copy the base context (see Chapter 8.3.1 Base Context) or even the super

context (see Chapter 8.3.5 SuperContext) because they are part of the whole template.

8.3.12 Selector

The selector allows navigating the meta-model and is extremely powerful. Please consult Chapter 9.3.2 Selec-

torFunction for details.

Use the Switch to Selector tool from the tool bar or Alt+Enter to navigate from the code to the selector. Use

Enter in the selector to jump back to the code.

Break Flag

Consider the following situation:

The subsequent template iterates over Container.element and prints the name of every element.

User Manual 116

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Let’s assume that we write template code that shall produce different code depending whether Contain-

er.element is of type ElementA, ElementB or ElementC.

A straightforward solution is introducing a context with a type cast for type in the inheritance hierarchy.

The problem is that a resource type of ElementC is also of type ElementB and ElementA. Therefore the above

template prints lines 2, 3 and 4 for resources of type ElementC. But the intention is that only line 2 is printed.

Use the break flag in the selector for the desired behavior. If the break flag is set all subsequent context of the

same level are skipped. Users familiar with programming language C or C++ can think of the switch/case/break

statement.

The following template prints line 2 for resource types of ElementC and then breaks the current iteration to

continue with the next resource for Container.element.

User Manual 117

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Please note that a context with a break flag is displayed with a ground beam.

8.3.13 Line Attributes

Use line attributes on a line context to control the output specific positions of a resource in a list. Place the

cursor on the desired line to apply a line attribute.

There are five different types of line attributes which might be applied to a line context.

Context Operation Icon Shortcut Description

First

Alt+1 The first element of the iteration

Not First

Alt+2 All elements of the iteration except the first

Not Last

Alt+3 All elements of the iteration except the last

Last

Alt+4 The last element of the iteration

Empty

Alt+5 For empty iterations

The following template prints the comment on line 7 only for the first element of the iteration over the list

Parent.child. Please note that line 7 is not printed if Parent.child is empty.

User Manual 118

 © 2017 Actifsource AG, Switzerland - all rights reserved.

The following example prints a comment on line 8 if Parent.child is empty.

8.3.14 Column Attributes

Use column attributes on a column context to control the output specific positions of a resource in a list. Select

the desired characters to apply a line attribute.

There are five different types of column attributes which might be applied to a column context.

User Manual 119

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Context Operation Icon Shortcut Description

First

Alt+1 The first element of the iteration

Not First

Alt+2 All elements of the iteration except the first

Not Last

Alt+3 All elements of the iteration except the last

Last

Alt+4 The last element of the iteration

Empty

Alt+5 For empty iterations

The following example prints the comma after Param.name for all elements of the iteration except the last.

The next example prints void on line 7 if Parent.child is empty.

User Manual 120

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.15 FunctionSpace

As shown in Chapter 9.2 Function Space the Template acts as a Functions Space. Therefore functions might be

placed directly in the template (see Chapter 9 Functions for details).

Function calls are displayed in italic. In the subsequent example there is a call to Parent.className where

className is the function.

To see the model of a function within a template just open the folding on the template.

If a function is placed in a function space other than the own template the function call is displayed with the

name of the function space after the @ sign. Parent.className@MyFunctionSpace indicates a function call

where the function className is located in the function space MyFunctionSpace.

User Manual 121

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.16 Extract Function

The Actifsource Template Editor allows you to extract selected expressions as functions. Please consider ex-

tracting complex expression if you use them more than once.

Selecting an expression which might also contain links leads to a light bulb on the left side which indicates

that there is a Quick Assist available. Click on the light bulb or press Ctrl+1 to open the Quick Assist.

User Manual 122

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.3.17 Context Path

The path from the outermost to the innermost context is called Context Path. Actifsource uses the Context Path

to determine the parameters of a function (see Chapter 9.2.1 Function Parameters).

Consider the following meta-model:

The subsequent template shows nested contexts based on the above meta-model. Please note that the bread-

crumb displays the context path for the actual cursor position.

The template shows the following context paths.

Line Context Path

Line 1 A

Line 2 A, B

Line 3 A, B, C

Line 4 A, B, C, D

User Manual 123

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Calling a function with parameters is only allowed if the context path is matching.

The following function fD_C_B_A is based on Class D and declaring the parameters c of type C, b of type B, and

a of type A.

Calling fD_C_B_A is only allowed if the context path contains at least A, B, C, and D in the given order.

Consider a function fD_A which is based on Class D and declaring a parameter a of type A. It is allowed to call

this function on the context path A, B, C, and D because it contains A and D in the correct order.

User Manual 124

 © 2017 Actifsource AG, Switzerland - all rights reserved.

8.4 Declaring a Programming Language
The Actifsource Template editor does syntax highlighting for keywords, comments, and strings. The actual

selected language is determined by the Language Line (see Chapter 8.3.3 Language Line).

8.4.1 Supported Programming Languages

Currently Actifsource supports syntax highlighting for the following programming, script, markup, or domain

languages.

Programming Language Description File Name Extension

Ada ada

C c, h

C# Microsoft C Sharp cs

C++ cpp, hpp

Cobol cob

Css Cascading Style Sheet css

D d

Delphi dfm

Eiffel e

Erlang erl, hrl

GraphViz http://www.graphviz.org/ dot

Groovy groovy

Haskell hs

Html Hyper Text Markup Language html, xtml

Java java

JavaScript js

Modula2 mod

Oberon pas

OmgIdl http://www.omg.org/gettingstarted/omg_idl.htm idl

Pascal pas

Perl pl

Php php

Python py

Ruby rb

Scala scala

Sql Structured Query Language for RDBMS sql

StructuredText http://en.wikipedia.org/wiki/Structured_text st

Svg Scalable Vector Graphics svg

Text Plain text txt

http://www.graphviz.org/
http://www.omg.org/gettingstarted/omg_idl.htm
http://en.wikipedia.org/wiki/Structured_text

User Manual 125

 © 2017 Actifsource AG, Switzerland - all rights reserved.

VisualBasic Microsoft Visual Basic vb, vba

Xml Extensible Markup Language xml

8.4.2 TemplateLanguage Model

To create your own template language model just instantiate the class TemplateLanguage.

fileNameExtension

The file name extension of the template language is used to automatically select the language line (see Chapter

8.3.3 Language Line) from the file extension in the file line (see Chapter 8.3.2 File Line).

keywordStyle

A list of keywords including the syntax style (color, font modifier)

stringStyle

A declaration of start and end tag for strings including the syntax style (color, font modifier)

User Manual 126

 © 2017 Actifsource AG, Switzerland - all rights reserved.

singleLineComment

A declaration of the start tag for single-line comments including the syntax style (color, font modifier)

mutliLineComment

A declaration of start and end tag for multi-line comments including the syntax style (color, font modifier)

8.4.3 File Extension Priority Rules

You might define your own template language defining the same file name extension as a built-in language.

Actifsource will handle user-defined template languages with higher priority so that you can overwrite the

standard.

User Manual 127

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9 Functions

9.1 Overview
Actifsource functions might be called from templates (see Chapter 8 Template Editor), from other functions, or

from selector relations (see Chapter 4.4.7 SelectorRelation). There are different supported types of functions

(see Chapter 9.3 Function types).

9.2 Function Space
The function space is the resource where functions are living. We know two different types of functions spaces,

both derived from AbstractFunctionSpace.

FunctionSpace is the place where you can place any function. Template is a code template where you can

place functions in the scope of the template.

Functions are grouped by a FunctionContext. By the typeRef, the FunctionContext is bound to a Class or an

Enum. Functions in the function context are applicable on instances of types referenced by typeRef.

Note that Actifsource prohibits more than one function context with the same typeRef in the same function

space.

9.2.1 Function Parameters

A function might define a set of parameters. If calling a function from a template, Actifsource automatically

tries to match with the context path (see Chapter 8.3.17).

Function parameters are defined in the model of the specific function type (see Chapter 9.3 Function types).

User Manual 128

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Using function parameters in a template function (see Chapter 9.3.6 TemplateFunction) leads to the corre-

sponding super contexts (see Chapter 8.3.5 SuperContext).

9.2.2 Using function parameters in a java function (see Chapter 9.3.3 SelectorFunction

Selector functions allow you to navigate the model by using the selector syntax. Starting from a Class defined

by FunctionContext.typeRef you may navigate via the resource properties.

Selectors might be used in Templates to select a context. But selectors might also be called from within selec-

tors – even recursively.

User Manual 129

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Forward navigation

Consider the following meta-model.

We like to define a selector function named getSubChild on Parent which returns all sub-children in all children

of the parent. The return type when navigating along a property is given by the range of the property, i.e, in

our example the expected return type is a list of elements of type SubChild.

To navigate from Parent via child to subChild just assemble a selector Parent.child.subChild. Make sure to use

content assist (Ctrl+Space) when writing selector functions.

This is what a selector function could look like.

Backward navigation

Consider the following meta-model.

User Manual 130

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To get the Parent instance for a SubChild instance we have to navigate backwards via the subChild and child

relation. The selector allows backward navigation via the minus relation.

List operators

Actifsource provides you with the following operators which are defined on lists (where the lists are given by

Selector expressions):

Operator Description

A union B The result is the concatenation of the two lists A and B. For example,
[a1,a2] union [a3,a1] is equal to [a1,a2,a3,a1].

A intersect B Only elements found in A and in B where duplicates are preserved and
the resulting order is given by A. For example, [a1,a1,a2,a2] intersect
[a2,a1,a1] is equal to [a1,a1,a2].

A except B For all elements b in B, the first occurrence of b in A is removed from A.
For example, [a2,a1,a3,a2,a1] except [a1,a2,a1] is equal to [a3,a2]

A else B All elements in A if a is not empty, otherwise all elements in B. For
example, [a1, a2] else [b1,b2] is equal to [a1,a2] and [] else [b1,b2] is
equal to [b1,b2].

Note that you can use brackets to control precedence (i.e. (A.x union A.y) intersect A.z). The result type of the

union, intersect and else operator is the most concrete supertype of the type of the two operands (e.g. if A is of

type NamedResource and B is of type Resource, then A intersect B, A union B and A else B are all of type Re-

source).

Down Cast

Consider the following meta-model.

User Manual 131

 © 2017 Actifsource AG, Switzerland - all rights reserved.

If you only like to get Leaf components from the Client, just use the type cast operator (colon).

Up Cast

It is always possible to use an upcast to a base class (i.e. Resource or NamedResource) if needed.

Self Cast

If your selector has to return the typeRef instance itself, use the self-cast. Consider the following selector func-

tion for Component returning the component instance itself.

User Manual 132

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Recursive navigation

The diagram below shows a composite pattern as presented in the book Design Patterns from Erich Gamma et

al. The composite pattern allows you to recursively instantiate Composite instances, which might aggregate

other components of type Leaf or again – of type Composite.

There is an easy way to find the Client of this recursive model using selectors. First, we collect all components

including the own component and all parent components.

For that reason we write a selector function for Component which returns the component itself and also all

parent components which are reachable by going backwards via the component relation.

User Manual 133

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To get the Client which is parent of all component just collect all component first by using the above selector

functions. From all this components in the collected set there is only one instance aggregated by Client. Let’s

write a selector function for that.

Please take extra care because there are two relations named component. One is Composite.component; the

other one is Client.component. Make sure to use Composite.component in allComponent and Cli-

ent.component in getClient.

Calling selectors with parameters

[TBD]

JavaFunction) leads to the corresponding java function arguments.

User Manual 134

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.2.3 Polymorphic calls

Function calls are polymorphic if a function has the same name, the same parameters and a typeRef to a sub

class.

In the following example, the function identify is defined for MyClass and MySubClass. There will be a poly-

morphic call to MyClass.identify, dependent on the type of the instance.

9.2.4 Non-Polymorphic calls

There are situations where polymorphic calls are not desired. You have to disable polymorphic calls on every

caller. Use the context menu Change to non-virtual call on the function.

User Manual 135

 © 2017 Actifsource AG, Switzerland - all rights reserved.

A small arrow indicates the non-polymorphic call.

9.2.5 Extends

Polymorphic calls are supported in the same function space by default. Extending another function space ena-

bles polymorphic calls over functions spaces.

User Manual 136

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.3 Function types
Actifsource supports different types of functions.

User Manual 137

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.3.1 Abstract Function

Abstract functions shall only be defined on types with an abstract modifier (see Chapter 4.6.1

ch.actifsource.core.Class).

For an abstract function, there must be non-abstract function for any non-abstract subclass in the same func-

tion space or in a function space that extends it.

9.3.2 SelectorFunction

Selector functions allow you to navigate the model by using the selector syntax. Starting from a Class defined

by FunctionContext.typeRef you may navigate via the resource properties.

Selectors might be used in Templates to select a context. But selectors might also be called from within selec-

tors – even recursively.

User Manual 138

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Forward navigation

Consider the following meta-model.

We like to define a selector function named getSubChild on Parent which returns all sub-children in all children

of the parent. The return type when navigating along a property is given by the range of the property, i.e, in

our example the expected return type is a list of elements of type SubChild.

To navigate from Parent via child to subChild just assemble a selector Parent.child.subChild. Make sure to use

content assist (Ctrl+Space) when writing selector functions.

This is what a selector function could look like.

Backward navigation

Consider the following meta-model.

User Manual 139

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To get the Parent instance for a SubChild instance we have to navigate backwards via the subChild and child

relation. The selector allows backward navigation via the minus relation.

List operators

Actifsource provides you with the following operators which are defined on lists (where the lists are given by

Selector expressions):

Operator Description

A union B The result is the concatenation of the two lists A and B. For example,
[a1,a2] union [a3,a1] is equal to [a1,a2,a3,a1].

A intersect B Only elements found in A and in B where duplicates are preserved and
the resulting order is given by A. For example, [a1,a1,a2,a2] intersect
[a2,a1,a1] is equal to [a1,a1,a2].

A except B For all elements b in B, the first occurrence of b in A is removed from A.
For example, [a2,a1,a3,a2,a1] except [a1,a2,a1] is equal to [a3,a2]

A else B All elements in A if a is not empty, otherwise all elements in B. For
example, [a1, a2] else [b1,b2] is equal to [a1,a2] and [] else [b1,b2] is
equal to [b1,b2].

Note that you can use brackets to control precedence (i.e. (A.x union A.y) intersect A.z). The result type of the

union, intersect and else operator is the most concrete supertype of the type of the two operands (e.g. if A is of

type NamedResource and B is of type Resource, then A intersect B, A union B and A else B are all of type Re-

source).

Down Cast

Consider the following meta-model.

User Manual 140

 © 2017 Actifsource AG, Switzerland - all rights reserved.

If you only like to get Leaf components from the Client, just use the type cast operator (colon).

Up Cast

It is always possible to use an upcast to a base class (i.e. Resource or NamedResource) if needed.

Self Cast

If your selector has to return the typeRef instance itself, use the self-cast. Consider the following selector func-

tion for Component returning the component instance itself.

User Manual 141

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Recursive navigation

The diagram below shows a composite pattern as presented in the book Design Patterns from Erich Gamma et

al. The composite pattern allows you to recursively instantiate Composite instances, which might aggregate

other components of type Leaf or again – of type Composite.

There is an easy way to find the Client of this recursive model using selectors. First, we collect all components

including the own component and all parent components.

For that reason we write a selector function for Component which returns the component itself and also all

parent components which are reachable by going backwards via the component relation.

User Manual 142

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To get the Client which is parent of all component just collect all component first by using the above selector

functions. From all this components in the collected set there is only one instance aggregated by Client. Let’s

write a selector function for that.

Please take extra care because there are two relations named component. One is Composite.component; the

other one is Client.component. Make sure to use Composite.component in allComponent and Cli-

ent.component in getClient.

Calling selectors with parameters

[TBD]

User Manual 143

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.3.3 JavaFunction

Actifsource supports user-implemented Java functions that make use of the very powerful Javamodel to access

the Actifsource models from Java code (see also Section 9.5).

When you declare a Java function, Actifsource automatically generates a function skeleton in a file with the

same name as your function space found in the folder src-gen.

You should only modify generated files within protected regions (see Chapter 2.12.5 Protected Regions). Take

extra care that import statements are placed within the protected regions – especially if inserted automatically

by the Java content assist.

User Manual 144

 © 2017 Actifsource AG, Switzerland - all rights reserved.

As function arguments, an instance of type FunctionContext.typeRef and all parameters are passed. Use the

Java content assist (Ctrl+Space) to display available functions. To access properties choose my-

Class.selectMyProperty(). For more information on how to access the Javamodel see Chapter 9.5.

User Manual 145

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Return Types

A Java function has a return type which is either a Type or a TypeReference.

A Type is either a SimpleType or a ListType. A SimpleType can, in particular, be a ClassType, which references

any Class, or a LiteralType, which references any Literal. For a LiteralType the return type of the generated

Java function is the Java class given by the return value of the method getValueType() of the ILiteralAspect (e.g.

in the example above the LiteralAspect of StringLiterals

(ch.actifsource.core.model.aspects.impl.String.StringLiteralAspect) defines that java.lang.String represents

StringLiterals and, therefore, the the return type of identify is java.lang.String). A ListType references either a

Class or a Literal (more precisely, it actually references an AbstractType). The return type of the generated Java

function is then a java.util.List<Class>, where Class is the Java class that corresponds to the Literal or the Class.

Note that in the latter case the Java class is the wrapper Java class that corresponds to the Actifsource Class

and is provided by the Javamodel (see also Chapter 2 and Section 9.5).

A TypeReference is either a GenericContextType or a GenericContextListType. In the first case, the return type

of the generated Java function is <T extends C> T where C is the Java class corresponding to the type of the

element the function is called on (the this-instance). In the second case, the return type of the generated Java

function is a <T extends C> java.util.List<T> where T is defined as before (see examples below).

Note that function with a return type of GenericContextType or a GenericContextListType can be applied to

elements of any sub-type of the type given by typeRef of the FunctionContext, i.e., the this-parameter of the

generated Java function is <T extends Class> T where Class is the Java wrapper class corresponding to the

typeRef of the FunctionContext.

User Manual 146

 © 2017 Actifsource AG, Switzerland - all rights reserved.

User Manual 147

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.3.4 JavaListFunction

Java list functions can be applied to a list of elements defined by a Selector expression, e.g. in the Selector ex-

pression Parent.child.myFunction@ChildFunctionSpace the function myFunction is called on the list of all Chil-

dren reachable from Parent via the relation child (see example in Section 9.3.2). The this-parameter of the

generated Java function is then of type java.util.List<C> where C is the Java class corresponding to the typeRef

of the FunctionContext (respectively java.util.List<T extends C> if the returnType of the Java list function is

GenericContext(List)Type). Consider the following example that is based on the meta-model from Section

9.3.5:

The return types of JavaListFunctions are determined in the same way as for JavaFunctions (see Section 9.3.3).

A list of built-in (Java) list functions is presented in Section Fehler! Verweisquelle konnte nicht gefunden werd-

en..

Consider an extended meta-model where Parent can be referenced by a ParentContainer via a relation parent:

In this case, the selector ParentContainer.parent.child.myFunction@MyFunctionSpace constructs for each

Parent the list of Children reachable from this Parent and then applies the function myFunction to each of

these lists. If the function should be applied to the list of Children reachable indirectly via parent->child, we can

write a (Selector)Function that returns a list of all these Children, e.g. ParentContain-

er.getAllChildren@MyFunctionSpace where getAllChildren is a SelectorFunction with the selector ParentCon-

tainer.parent.child. In the selector ParentContain-

er.getAllChildren@MyFunctionSpace.myFunction@MyFunctionSpace, the function myFunction is only called

once on the list of all Children reachable from ParentContainer.

9.3.5 JavaAspectFunction

[TBD]

User Manual 148

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.3.6 TemplateFunction

A template function behaves in the same way as a template, but there are no files generated from a template

function. Just think of a template function as a sub template which can be expanded in a template or in anoth-

er template function (also recursively).

Consider the following meta-model:

Let us now write a template function for a component which writes the name and type of the component and,

if the given component is a composite, also does the same recursively for all subcomponents.

First of all we have to define the template function in the model.

To open the template function with the template editor, just double click in the Project Explorer. Use the Link

with Editor tool (see Chapter 2.10.1 Link with Editor) to easily locate the template function in the project ex-

plorer.

User Manual 149

 © 2017 Actifsource AG, Switzerland - all rights reserved.

In line 1 we write out the component name and its type name. In line 2 we iterate over all aggregated compo-

nents, but only if the component is of type Composite (type cast). In this context we call the template function

asText recursively for all aggregated component.

Note the indention of two spaces on line 2. Actifsource takes care of the indentions so that the whole content

of the template function is indented.

We can now call our template function from a template. If there is a call to a function from another function

space, the function space is explicitly stated using the notation myFunction@MyFunctionSpace.

User Manual 150

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Next, we create an instance of type Client containing composites and leaves. The output from the above tem-

plate might look as follows. Note that the indention is applied recursively.

9.3.7 TemplateLineFunction

The template line function behaves like a template but without the possibility to set contexts (see Chapter 8.3.9

Line Context, Column Context, Protected Context). The template line allows you to create simple single line

texts as for name aspects (see Chapter 4.6.1 ch.actifsource.core.Class).

Consider a resource Person with two string literals firstName and LastName.

Write a template function for person, which prints out the person's last name and first name.

User Manual 151

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Simply use the template line function as name aspect in the class Person.

Please not that it is also possible that the selector of the name aspect can be used directly as template line.

User Manual 152

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Note that Person is only a Resource but not a NamedResource. The attributes firstName and lastName are

therefore just normal properties.

Defining the name aspect as seen above synthesizes the name.

9.4 Built-in functions
Actifsource provides lots of useful built-in functions.

9.4.1 Built-in functions on Any

Actifsource provides the following built-in functions on Any.

Function Return type Description

guid Literal Gets the unique identifier of any Resource or Literal. (For Resources it
is a GUID, for Literals it is the Literal itself.)

9.4.2 Built-in functions on Any List

Actifsource provides the following built-in functions on List of Any.

count IntegerLiteral Counts the number of elements in the list.

isEmpty BooleanLiteral Returns true if and only if the list is empty.

isSet BooleanLiteral Returns true if and only if the list contains no duplicates.

first T Returns the first element in the list.

last T Returns the last element in the list.

User Manual 153

 © 2017 Actifsource AG, Switzerland - all rights reserved.

count IntegerLiteral Counts the number of elements in the list.

reverse List of T Reverses the elements in the list.

distinct List of T Remove duplicates from a list, first to last.

9.4.3 Built-in functions on Resource

Actifsource provides the following built-in functions on Resource.

Function Return type Description

package String Returns the package of the resource as string.

guid String Returns the GUID of the resource as string.

simpleName String Returns the Resource's name as defined by its NameAspect.
If the resource extends NamedResource, the NameAspect returns the
value of the name attribute. If no NameAspect is defined, the GUID of
the resource is returned.

9.4.4 Built-in functions on List of Resource

Actifsource provides the following built-in functions on List of Resource.

Function Return type Description

sortByGuid List of T Sorts the list of resources by their GUIDs.

sortBySimpleName List of T Sorts the list of resources by their names.

9.4.5 Built-in functions on Literal

Actifsource provides the following built-in functions on Literal.

Function Return type Description

guid T Gets the identifier of the Literal value. This is the Literal itself.

9.4.6 Built-in functions on IntegerLiteral.

Actifsource provides the following built-in functions on IntegerLiteral.

Function Return type Description

increment Integer Increments an integer number.

decrement Integer Decrements an integer number.

notZero Integer Returns the number unless it is zero.

9.4.7 Built-in functions on IntegerLiteral.

Actifsource provides the following built-in functions on List of IntegerLiteral.

Function Return type Description

sum Integer Calculates the sum of a list of integer numbers.

minimum Integer Returns the minimum integer in a list.

maximum Integer Returns the maximum integer in a list.

9.4.8 Built-in functions on BooleanLiteral

Actifsource provides the following built-in functions on BooleanLiteral.

Function Return type Description

isFalse Boolean Returns true if the Boolean value is false.

9.4.9 Built-in functions on List of Character

Actifsource provides the following built-in functions on List of Character.

Function Return type Description

string Boolean Builds a string from characters.

User Manual 154

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.4.10 Built-in functions on List of Letter

Actifsource provides the following built-in functions on List of Letter.

Function Return type Description

string Word Builds a word from letters.

9.4.11 Built-in functions on TextLiteral

Actifsource provides the following built-in functions on TextLiteral.

Function Return type Description

suppressIndent Text Sets the current intent mode to 'suppress indent': All lines after the
first line start at the very beginning of the line. If applied in a template
function, the setting of the outer template is not affected.
The return value is the text itself.

indent Text Sets the indent mode to 'indent' (=default). All lines will start at the
same position as the first line. (The preceding characters in the first
line are copied, non-whitespace characters replaced by whitespaces.)
If applied in a template function, the setting of the outer template is
not affected.
The return value is the text itself.

prefix Text Sets the indent mode to 'prefix'. All lines will repeat the preceding
characters in of the first line. If applied in a template function, the
setting of the outer template is not affected.
The return value is the text itself.

splitLines List<String> Splits text at line breaks into a list of strings.

split80 List<String> Splits text into a list of strings of maximum 80 characters. Words are
considered atomic, if possible.

split100 List<String> Splits text into a list of strings of maximum 100 characters. Words are
considered atomic, if possible.

escapedString String Escapes the text such that it can be embedded into C, C++ or Java
source code. Escaping for C/C++ only works for ASCII characters.

notEmpty Text Returns the text unless it is empty.

9.4.12 Built-in functions on StringLiteral

Actifsource provides the following built-in functions on StringLiteral.

Function Return type Description

character List of Character Gets the characters in the string.

length Integer Gets the number of characters in the string.

toFirstUpper String Gets the same string with capital first letter.

toFirstLower String Gets the same string with small first letter.

toAllUpper String Gets the string in all capital letters.

toAllLower String Gets the string in all small letters.

camelcapToUnderscore String Inserts an underscore before every uppercase letter unless it is
the first letter in the string.

whitespaceToCamelcap String Replaces letters behind one or many whitespace characters by
their uppercase counterparts, replacing those whitespace
characters.

whitespaceToUnderscore String Replaces all whitespace characters by underscore characters.

split80 List of String Splits the string into a list of strings of maximally 80 characters.

split100 List of String Splits the string into a list of strings of maximally 100 charac-
ters.

packageToDirectory String Replaces '.' by '/'.

isNotEmpty Boolean Returns true if and only if the string is not an empty string.

escapedString String Escapes the string such that it can be embedded into C, C++ or
Java source code. Escaping for C/C++ only works for ASCII

User Manual 155

 © 2017 Actifsource AG, Switzerland - all rights reserved.

characters.

part List of Literal Parses the string into words, natural numbers and special
characters, removing whitespaces.

9.4.13 Built-in functions on Word

Actifsource provides the following built-in functions on Build.

Function Return type Description

character Letter Gets the letters in the word.

9.4.14 Built-in functions on Guid

Actifsource provides the following built-in functions on Build.

Function Return type Description

timestamp Long Returns the GUID's timestamp in 100 nanoseconds starting from Oct
15, 1582.

time Time Returns the GUID's time.

identify Resource Returns the Resource identified by the GUID.

9.4.15 Built-in functions on Build

Actifsource provides the following built-in functions on Build.

Function Return type Description

once Build Used in the selector of the template. Build.once means a template is
not based on a resource but only built once.

9.4.16 Built-in functions on LinkSelector

Actifsource provides the following built-in functions on LinkSelector.

Function Return type Description

selectorText String Converts a selector to simple text string.

selectorResultType AbstractType Calculates a selectors result type.

9.4.17 Built-in functions on File

Actifsource provides the following built-in functions on File.

Function Return type Description

contents Text Returns a file's contents.

9.5 Accessing the model from within Java function
It is possible to access the model, other functions (see chapter 9.3 Function types), or even built-in functions

(see chapter Fehler! Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht ge-

funden werden.) from within Java functions.

Consider the following meta-model for the subsequent examples:

9.5.1 Model forward access

Let’s write a Java Function for Parent which returns only instances of type Child with names beginning with “A”.

Start by declaring a Java Function named filterChild as seen in Chapter 9.3.3.

User Manual 156

 © 2017 Actifsource AG, Switzerland - all rights reserved.

For the model forward access use the selectProperty() function on the given resource where property is the

property to select.

The subsequent filter function iterates over the relation Parent.child in the for-Statement via par-

ent.selectChild(). Then we check if Child.name starts with “A” via child.selectName(). If the condition is fulfilled

we add the filtered child to the child list. At the end we return the child list with the filtered children.

You might use the filter function in the selector of a template or in any other function. The following template

only prints children with names starting with “A”.

User Manual 157

 © 2017 Actifsource AG, Switzerland - all rights reserved.

9.5.2 Model backward access

Using the selector syntax accessing the model backwards is quite easy (see chapter 9.3.2 SelectorFunction) by

the minus sign. Accessing the model backwards is also possible in the Java code.

For the model backward access use the static function selectToMeProperty() on the class which defines the

relation.

Since we want to access the relation Parent.child backwards we have to choose the static method Par-

ent.selectToMeChild() providing the actual child as parameter. As a result we get the parent of the given child.

9.5.3 Function access

Use the extension mechanism to access any of your functions from within Java Code. Note that the extension

mechanism also supports polymorphic calls (see chapter Fehler! Verweisquelle konnte nicht gefunden wer-

den. Fehler! Verweisquelle konnte nicht gefunden werden.).

Let’s assume that we have a function filterChild as shown in chapter 9.5.1 Model forward access. Let’s write a

Java function filterChildReverse which returns a reverse list of the filtered children based on filterChild.

For the function access use the extension() function on the given resource with Func-

tionSpace.ITypeRefFunctions.class as parameter. FunctionSpace is the function space where your function is

defined. TypeRef is FunctionContext.typeRef. The static property .class is given from Java and represents a class

as an object.

9.5.4 Built-in function access

9.5.5 Use the extension mechanism to access built-in functions on resources (see chapter 9.4.1 Built-in

functions on Any

Actifsource provides the following built-in functions on Any.

Function Return type Description

guid Literal Gets the unique identifier of any Resource or Literal. (For Resources it
is a GUID, for Literals it is the Literal itself.)

9.5.6 Built-in functions on Any List

Actifsource provides the following built-in functions on List of Any.

count IntegerLiteral Counts the number of elements in the list.

isEmpty BooleanLiteral Returns true if and only if the list is empty.

isSet BooleanLiteral Returns true if and only if the list contains no duplicates.

User Manual 158

 © 2017 Actifsource AG, Switzerland - all rights reserved.

first T Returns the first element in the list.

last T Returns the last element in the list.

count IntegerLiteral Counts the number of elements in the list.

reverse List of T Reverses the elements in the list.

distinct List of T Remove duplicates from a list, first to last.

Built-in functions on Resource) from within Java Code. Accessing built-in functions is done the same way as

seen in the above chapter 9.5.3 Function access.

To write a function which returns the package and the simpleName of a child we can reuse the built-in func-

tions package() and simpleName().

For the built-in function access use the extension() function on the given resource with Built-

in.IResourceFunctions.class as parameter.

Note that you cannot access built-in functions for literals via the extension mechanism.

User Manual 159

 © 2017 Actifsource AG, Switzerland - all rights reserved.

10 Code Snippets

10.1 Overview
Actifsource supports a special editor, the so-called Code Snippet editor, which allows the user to insert

Actifsource resources as variables or functions into snippets of source code. Such a snippet of code is essential-

ly a list of statements written in C-, where C- is a subset of the programming language ANSI C. A more precise

definition of C- will be given below. Actifsource then provides the possibility to generate code in an arbitrary

target language from these code snippets. This is achieved by parsing the input code according to the grammar

of C- and applying either built-in or user-provided templates to the resulting parse tree. This parse tree is actu-

ally a model composed of temporary (i.e. non-persistent) resources.

The following example shows a code snippet where the underlined identifiers are resources used as variables

and functions:

10.2 Defining Code Snippet Relations
First, we will show how to add a code snippet relation to a class and define all the necessary properties of this

relation. Such a relation enables the code snippet editor on instances of this class and allows a user to add code

written in the chosen input language to the resource.

Most of the examples and screenshots in the following are taken from the Code Snippet tutorial available at

http://www.actifsource.com/tutorials/index.html. This tutorial is based on the following meta-model for

statemachines and shows how to add code snippets for conditions on transitions and for actions taken when a

condition is executed.

http://www.actifsource.com/tutorials/index.html

User Manual 160

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To add code snippets to resources of type MyClass, you have to edit MyClass in the resource editor, add a new

property and choose the type StructuredCodeSnippetRelation for the relation in the Type Selection dialog:

User Manual 161

 © 2017 Actifsource AG, Switzerland - all rights reserved.

In the resulting property, you have to create the following statements: subjectObjectCardinality, objectCardi-

nality and name as for Own- or UseRelations (see Section 4.3).

Additionally, we define the CodeSnippetRelationAspect as shown below with the class

ch.actifsource.codesnippet.metamodel.aspect.impl.StructuredCodeSnippetRelationAspect.

10.2.1 Language

Next, we choose an input language for the code snippet.

The input language is used to check the input code syntactically and to highlight keywords of the language.

Furthermore, the input language defines which parser will be applied to the input code when generating out-

put code from the code snippet. See Section 10.3 for a description of the available input languages.

10.2.2 Tokens

Finally, we need to define which resources will be available as functions and variables in the code snippet edi-

tor. This is done by creating one or more token statements referring to a RelationTokenProvider. The Rela-

tionTokenProvider allows the user to define a selector (cf. Section 8.3.12) which defines a list of resources.

Additionally, it allows you to choose a tokenType which is either

• ch.actifsource.codesnippet.metamodel.TokenType.Variable for variables or

• ch.actifsource.codesnippet.metamodel.TokenType.Function for functions.

User Manual 162

 © 2017 Actifsource AG, Switzerland - all rights reserved.

For variables you can define sub-tokens. The definition of sub-tokens instructs the Content Assist to propose all

resources defined by the selector of the sub-token when you insert a '.' after a token. This means that sub-

tokens can be used to insert resources as identifiers of fields in structs where the token corresponds to the

struct and the sub-token to the field (for details see Section 0 below).

10.3 Input Languages
At the moment, the following languages are available: C-, CMinusCondition and Text.

10.3.1 C-

The language C- is a (proper) subset of the language ANSI C. It has the following restrictions:

1. C- supports no declarations (of variables, functions or types)

2. C- does not support the use of pointers and addresses

3. C- does not support type casts

4. C- does not support conditional statements (Expression ? Expression : Expression). However, they can

easily be replaced by equivalent if-statements.

5. The comma operators is not supported, i.e., expressions such as

a. X = 2, z = 42;

b. Foo(x,(y=2,y));

are not valid.

6. Postfix and prefix increment and decrement operators ('++','--') are not supported.

C- supports access to fields of structs. As identifiers for fields either variables or arbitrary identifiers are valid.

The Content Assist provides proposals for fields of structs if the variable definitions are created accordingly (see

Section 10.4.1).

C- knows the following list of keywords: break, else, switch, return, continue, for, default, do, if, while, until,

case.

Furthermore, the language knows the following operators:

Infix-Operators: { ||, &&, |, ^, &, ==, !=, <, >, <=, >=, <<, >>, +, -, *, /, %}

Prefix-Operators: { !, ~, +, -}

Assignment-Operators: {= =, *=, /= , %=, +=, -= , <<= , >>= , &=, ^= , |=}

10.3.2 CminusCondition

A code snippet with CMinusCondition allows the user to input a conditional expression as in ANSI C (e.g. a rela-

tional or equality expression) while the same restrictions apply as for C- (details see Section 10.3.1). Such an

expression can then be used for example as the condition in an if-statement.

User Manual 163

 © 2017 Actifsource AG, Switzerland - all rights reserved.

10.3.3 Text

Text allows the user to insert arbitrary text with resources added as either variables or functions. This language

should only be used if C- is too restrictive and validation of the input code is not required. The input code is

syntactically not validated1 and the resulting parse tree is very simple:

10.4 Code Snippet Editor
The code snippet editor is available in the resource editor for any property of type StructuredCodeSnippetRela-

tion. The editor supports multi-line input. It highlights keywords and comments according to the language

property of the StructureCodeSnippetRelation. You can inspect the definition of the input language by

CTRL+Left-Click on the chosen language:

This opens the chosen language in the resource editor and allows you to browse the properties such as key-

words and style of comments of the language:

1 Actually, it is validated, but it has a very simple and non-restrictive grammar.

User Manual 164

 © 2017 Actifsource AG, Switzerland - all rights reserved.

10.4.1 Content Assist

By using CTRL+Space in the code snippet editor you can as usual call the Content Assist. The Content Assist will

show you all available resources to insert as functions and variables. The set of available resources is defined by

the property token on the corresponding StructuredCodeSnippetRelation (see Section10.2). Inserted resources

are underlined with blue color.

Structures

The StructuredCodeSnippetRelation supports the definition of complex and nested data types such as structs

by defining a set of subtokens for a token. After inserting an instance of a token into the code snippet editor

followed by a '.' (struct field access in C-), the Content Assist will propose the list of all resources defined by the

selectors of its sub-tokens.

Consider for example the following meta-model:

Furthermore, we consider a StructuredCodeSnippetRelation on class A with the following definition of tokens:

User Manual 165

 © 2017 Actifsource AG, Switzerland - all rights reserved.

We can now create a resource a1 of type A and insert code into the code snippet editor. When calling the Con-
tent Assist after inserting b1., it proposes the list c1, c2 (available through the Selector B.c) and d1 (available
through the Selector B.d). See first screenshot below. Note that it is also syntactically correct to insert arbitrary
strings as identifiers for fields of structs. After inserting one or more such identifiers followed by a '.', the Con-
tent Assist will again propose the list of root elements (tokens) independently of possible resources before the
string (see second screenshot below).
It is not possible to define structures recursively. Thus, you have to explicitly define the whole structure to the
desired (finite) depth if it is self-referential.

User Manual 166

 © 2017 Actifsource AG, Switzerland - all rights reserved.

10.4.2 Validation and Errors

The syntax of the input code in the code snippet editor is continuously validated. Syntax errors are shown by

underlining the errors in the code and adding an error description to the Model Inconsistencies view:

User Manual 167

 © 2017 Actifsource AG, Switzerland - all rights reserved.

10.5 Code Generation
In this section, we will show how to generate code in an arbitrary target language from code snippets. As ex-

plained in the introduction of this chapter, the input code of a code snippet is parsed by a parser that depends

on the chosen input language (e.g. C- or Text). From the resulting parse tree, Actifsource generates a model

that is composed of temporary resources. The meta-model for parse trees of the language C- is available at

http://www.actifsource.com/manuals/index.html. The parse tree for unvalidated input (Text) can be found in

Section 10.3.3.

To generate output files from these temporary models, we can apply code templates or template functions to

these temporary resources, i.e., the temporary resources behave in exactly the same way as persistent re-

sources except that they are not shown in the resource browser (Project Explorer) and are deleted when the

session ends (e.g. the project or the workspace is closed). To use the content of code snippets in templates,

you can either use the built-in TemplateFunctions (see Section 10.5.1) or write your own templates or template

functions by modifying the built-in templates or writing them from scratch. The behavior of the built-in tem-

plate functions can be customized by overwriting the way names of variables and functions are created (see

Section Overwrite Variable and Function Names (Name Provider) below).

10.5.1 Built-in Template Functions

Actifsource provides the following built-in template functions which are defined on resources of type

ch.actifsource.codesnippet.metamodel.element.CodeSnippet:

• codeSnippetToST: generates Structured Text from a CodeSnippet with input language CMinus or CMi-

nusCondition.

• codeSnippetToC: generates C code from a CodeSnippet with input language CMinus or CMinusCondi-

tion.

• codeSnippetToText: generates code from a CodeSnippet with input language Text (unvalidated code).

• codeSnippetToFormattedC: generates formatted C code (HTML) from a CodeSnippet with input lan-

guage CMinus or CMinusCondition (the actual code is the p)

• codeSnippetToVHDL: generates VHDL code from a generates C code from a CodeSnippet with input

language CMinus or CMinusCondition

For all the above template functions, the names of variables and functions in the output code are generated by

calling the function simpleName@BuiltIn on the corresponding resource.

Note that the above template functions which are written for input languages CMinus and CMinusCondition

can also be applied to Text. The output is the same as when calling the function codeSnippetToText in this case.

Overwrite Variable and Function Names (Name Provider)

Generating the names of variables and functions by calling simpleName@BuiltIn, is in practice not always suffi-

cient to generate code that meets all the requirements (the requirements on the naming could depend on

naming conventions of the target language or names of variables could depend on the context in which the

corresponding resource is used). For these cases, Actifsource provides more flexible template functions which

takes a Literal of type ch.actifsource.codesnippet.metamodel.parsetree.template.NameProvider as an addi-

tional parameter:

• codeSnippetToSTwithNameProvider

• codeSnippetToCwithNameProvider

• codeSnippetToText

• codeSnippetToFormattedC

• codeSnippetToVHDL

http://www.actifsource.com/manuals/index.html

User Manual 168

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Apart from the generation of function and variable names, these templates have exactly the same behavior as

the corresponding template functions from the section above.

The additional parameter to this functions can be used to store additional context information necessary to

generate the names and to overwrite the functions used to generate the names, namely variable-

Name@TokenToName and functionName@TokenToName. These two functions take a parameter of type Re-

source (the resource corresponding to the variable resp. function) and generate the name by calling NamePro-

vider.variableName@TokenToName resp. NameProvider.functionName@TokenToName:

The Code Snippet tutorial available at http://www.actifsource.com/tutorials/index.html show how to imple-

ment a NameProvider by guiding you step-by-step through an example.

Implement a custom NameProvider

In general, one can implement and use a NameProvider as follows:

1. Write a LiteralAspect (e.g. MyNameProviderLiteralAspect) in Java which implements

ch.actifsource.core.model.aspects.impl.IGenericLiteralAspect<MyNameProviderLiteralAspect>.

2. Create your own resource of type Literal (e.g. MyNameProvider) which extends

http://www.actifsource.com/tutorials/index.html

User Manual 169

 © 2017 Actifsource AG, Switzerland - all rights reserved.

 ch.actifsource.codesnippet.metamodel.parsetree.template.NameProvider:

3. Create a Java interface (e.g. IMyNameProvider) which provides the members needed to manage and store

the context information needed by the NameProvider.

4. Create a FunctionSpace (e.g. MyNameFunctions) which extends TokenToName with a FunctionContext for

the newly created Literal type (e.g. MyNameProvider). Create the two functions variableName and func-

tionName with exactly the same signature as corresponding functions in the TokenToName.

User Manual 170

 © 2017 Actifsource AG, Switzerland - all rights reserved.

5. Write a JavaFunctions (e.g. createMyNameProvider) that generates an instance of the newly created Java

interface (e.g. IMyNameProvider).

6. In the template where the function to<Language>withNameProvider is used, call the newly created Java-

Function (createMyNameProvider) and call to<Language>withNameProvider with the output of the Java-

Function.

Note that the TemplateFunctions presented in Section 10.5.1 generate the names by internally calling the

name functions variableName and functionName on

ch.actifsource.codesnippet.metamodel.parsetree.template.NameProvider (the default NameProvider). Thus,

overwriting these functions in a FunctionSpace that extends TokenToName for the type NameProvider (see

example below) also changes the behavior of this TemplateFunctions without NameProvider (e.g.

toC@CodeSnippetToCode). This can, in particular, change the behavior of already existing templates and tem-

plate functions. Therefore, this approach should normally be avoided and a customized NameProvider imple-

mented instead.

User Manual 171

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Figure 1 FunctionSpace that extends TokenToName with functions overwriting the name functions on the built-in default
NameProvider.

10.5.2 Display Code Snippets in Diagrams

Since the parse trees created from the input code of a code snippet are temporary resources, they are only

visible for the code generator. To use the content of code snippets in diagrams, Actifsource provides template

functions which allow you to display the code in diagrams:

• displayCodeSnippet

• displayCodeSnippetSingleLine

These TemplateFunctions show the unprocessed code as it is entered by the user in the code snippet editor.

Both functions are defined on resources of type ch.actifsource.codesnippet.metamodel.element.CodeSnippet.

An example application of these functions can be found in the Actifsource Tutorial – Code Snippets at

http://www.actifsource.com/tutorials/index.html .

http://www.actifsource.com/tutorials/index.html

User Manual 172

 © 2017 Actifsource AG, Switzerland - all rights reserved.

11 Java API

11.1 Select-Fassade

11.1.1 Select Functions for Property

Function Return type Description

rangeOrNull Class Returns a Property’s range.

→ownerOrNull Class Returns a Property’s domain.

isOwnRelation boolean Check if a Property is an OwnRelation.

isDecoratingRelation boolean Check if a Property is a DecoratingRelation.

isSubRelation boolean Checks if a Relation extends another Relation.

isComposition boolean Checks if a Relation is a Composition.

superRelations Set of Relation Returns the Relations a Relation extends.

subRelations Set of Relation Returns the Relations that extend a given Relation.

rootProperty Relation Returns the first Properties of the Set of Properties a Proper-
ty extends, including itself.

rootRelation Relation Returns the first Relations of the Set of Relations a Relation
extends, including itself.

possibleDecoratingTypes Map ? ?

11.1.2 Select Functions for Statement

Function Return type Description

existsStatement boolean ?

findNext Property Set Returns the successor Statement of a given Statement.

nameOf Attribute Set Returns the composed simpleName in the form (Subject,
Predicate, Object).

statementPath List of Statement ?

decoratedNode Resource Returns the Resource that is decorated via this decorating
Statement.

11.1.3 Select Functions for Class

Function Return type Description

instances Set of Resource Returns the direct or indirect instances of a Class.

directInstances Set of Resource Returns the direct instances of a Class.

instancesWithPackage Set of Resource Returns the direct or indirect instances of a Class
in all Packages.

instancesWithMainPackage Set of Resource Returns the direct or indirect instances of a Class
with their main Package.

isTypeOfFilter Filter on Resource Returns a Filter which includes Resources of a
given Class.

resourceBySimpleNameOrNull Resource with Pack-
age

Returns the Instance having a given simple Name.

resourcesBySimpleName Set of Resource with
Package

Returns the Instances having a given simple Name.

resourceByFullNameOrNull Resource with Pack-
age

Returns the Instance having a given simple Name.

resourcesByFullName Set of Resource with
Package

Returns the Instances having a given simple Name.

allowedPropertiesOfType Set of Property Returns the (inherited or defined) Properties of a
Class.

allowedPropertiesOfTypeForRead Set of Property Returns the (inherited or defined) Properties of a
Class, including the overridden Properties.

allowedAttributesOfType Set of Attribute Returns the (inherited or defined) Attributes of a

User Manual 173

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Class.

allowedAttributesOfTypeForRead Set of Attribute Returns the (inherited or defined) Attributes of a
Class, including the overridden Attributes.

allowedRelationsOfType Set of Attribute Returns the (inherited or defined) Relations of a
Class.

allowedRelationsOfTypeForRead Set of Attribute Returns the (inherited or defined) Relations of a
Class, including overridden Relations.

isAbstractClass boolean Checks if a Class is abstract.

isFinalClass boolean Checks if a Class is final.

isSubclass Set of Type Checks if a Class extends another Class.

subclasses Set of Resource with
Package

Returns the Sub-Classes of a given Class.

superclasses Set of Resource with
Package

Returns the Super-Classes of a given Class.

matchingInstances Set of Type ?

isMatchingObjectFilter Filter on Resource ?

matchingSuperTypes Set of Type ?

matchingSubTypes Set of Type ?

isMatchingSuperType boolean ?

rangeToType Set of Type ?

11.1.4 Select Functions for Resource

Function Return type Description

exists boolean ?

packages Relation Set ?

mainPackage Relation Set ?

asPackagedResource Resource with
Package

Decorate a Resource by its main Package.

asPackagedResource Set of Resource
with Package

Decorate a Set of Resources by their main Packages. ?

namespace string Returns the name of the Packages and owning Resources,
concatenated with dot.

simpleName string Returns the Name of a Resource defined by the
NameAspect, or else the GUID.

hasName boolean Checks if a Resource has a Name, that is it has a
NameAspect defined.

hasModifiableName boolean ERROR

fullName boolean Returns the Name, predeeded by Package Names and
Name of the owner Resources.

isOwned boolean Checks if a Resource is directly or indirectly owned by an-
other Resource, or it is the same Resource.

isRootResource boolean Checks if a Resource is not owned by any other Resource.

isAllowedPredicate boolean ?

rootResource Resource Returns the owner Resource that directly resides in a Pack-
age.

rootStatements Statement ?

directlyOwnedResources Set of Resource ?

ownStatementOrNull Statement Returns the Statement stating that a given Resource is
owned by another Resource.

decoratedNode Resource Returns the Resource being decorated by this Decorator.

shallowType Type Returns the direct Type of a Resource.

isTypeOf boolean Check if a Resource is instance of a given Class.

toMeRelationsForType Relation ?

toMeTypes Set of Type ?

isMatching boolean ?

User Manual 174

 © 2017 Actifsource AG, Switzerland - all rights reserved.

matchingTypes Set of Type ?

allowedProperties Property Set Returns the (inherited or defined) Properties of a Re-
source’s Class.

allowedPropertiesForRead Property Set Returns the (inherited or defined) Properties of a Re-
source’s Class, including overridden Properties.

allowedAttributes Attribute Set Returns the (inherited or defined) Attributes of a Re-
source’s Class.

allowedAttributesForRead Attribute Set Returns the (inherited or defined) Attributes of a Re-
source’s Class, including overridden Attributes.

allowedRelations Relation Set Returns the (inherited or defined) Relations of a Resource’s
Class.

allowedRelationsForRead Relation Set Returns the (inherited or defined) Relations of a Resource’s
Class, including overridden Relations.

allowedToMeRelations Relation Set Returns the Relations having a Resource’s Class as range.

11.1.5 Select Functions for Extendable

Function Return type Description

isAbstractExtendable boolean Checks if an Extendable is abstract.

isFinalExtendable boolean Checks if an Extendable is final.

extensions Set of Extendable Returns the extending Resources.

extendedResource Set of Extendable Returns the extended Resources.

isExtension boolean Check if a Resource extends another Resource.

11.1.6 Select Functions for (Resource, Property)

Function Return type Description

attributeStatementOrNull Statement ?

allowedPropertiesForRead Property Set Returns the (inherited or defined) Properties of a Re-
source’s Class, including overridden Properties.

allowedAttributes Attribute Set Returns the (inherited or defined) Attributes of a Re-
source’s Class.

allowedAttributesForRead Attribute Set Returns the (inherited or defined) Attributes of a Re-
source’s Class, including overridden Attributes.

allowedRelations Relation Set Returns the (inherited or defined) Relations of a Re-
source’s Class.

allowedRelationsForRead Relation Set Returns the (inherited or defined) Relations of a Re-
source’s Class, including overridden Relations.

allowedToMeRelations Relation Set Returns the Relations having a Resource’s Class as range.

objectsForAttribute List of Any Returns the Objects as result of the Evaluation of a given
Attribute on a given Resource

objectForAttribute List of Any Returns the first Objects as result of the Evaluation of a
given Attribute on a given Resource, or else a default.

objectForAttributeOrNull List of Any Returns the first Objects as result of the Evaluation of a
given Attribute on a given Resource.

statementForAttributeOrNull List of State-
ments

Returns the first Statement on a given Resource for a
given Attribute.

objectForPropertyOrNull List of State-
ments

Returns the first Objects as result of the Evaluation of a
given Property on a given Resource.

objectMaxCard int Returns the maximum allowed count of Statement of a
given Relation for a Resource in the Relation’s range.

objectMinCard int Returns the minimum allowed count of Statement of a
given Relation for a Resource in the Relation’s range.

attributeMinCard int Returns the minimum allowed count of Statement of a
given Attribute for a Resource in the Attribute’s domain.

attributeMaxCard int Returns the minimum allowed count of Statement of a
given Attribute for a Resource in the Attribute’s domain.

User Manual 175

 © 2017 Actifsource AG, Switzerland - all rights reserved.

subjectMinCard int Returns the minimum allowed count of Statement of a
given Relation for a Resource in the Property’s domain.

subjectMaxCard int Returns the minimum allowed count of Statement of a
given Relation for a Resource in the Property’s domain.

objectForAttributeOrNull List of Literal Returns the first Objects as result of the Evaluation of a
given Attribute on a given Resource.

valueForAttributeOrNull string Returns the string value of the first Object as result of the
Evaluation of a given Attribute on a given Resource.

valueForBooleanAttribute boolean Returns the string value of the first Object as result of the
Evaluation of a given Attribute on a given Resource, or a
default value.

objectForRelationOrNull List of Re-
source

Returns the first Objects as result of the Evaluation of a
given Relation on a given Resource.

objectsForRelation List of Re-
source

Returns the Objects as result of the Evaluation of a given
Relation on a given Resource.

objectsForRelationOfType List of Re-
source

Returns the Objects as result of the Evaluation of a given
Relation on a given Resource, having a given Type.

ownerOrNull Resource Returns a Resource’s owner Resource.

relationStatementOrNull Statement ?

statementOrNull Statement Returns the Statement with given Subject, Predicate and
Object.

statement Set of State-
ment

Returns the Statements with given Subject.

statementsForAttribute Set of State-
ment

Returns the Statements with Subject and Predicate given
by Resource and Attribute.

statementsForRelation Set of State-
ment

Returns the Statements with Subject and Predicate given
by Resource and Relation.

statementForRelationOrNull Set of State-
ment

Returns the first Statement with Subject and Predicate
given by Resource and Relation.

subjectForRelationOrNull Set of State-
ment

Returns the first Subject with Object and Predicate given
by Resource and Relation.

subjectsForRelation Set of State-
ment

Returns the Subjects with Object and Predicate given by
Resource and Relation.

toMeStatementForRelationOrNull Set of State-
ment

Returns the first Statement with Object and Predicate
given by Resource and Relation.

toMeStatementsForAttribute Set of State-
ment

Returns the Statements with Object and Predicate given
by Resource and Attribute.

toMeStatementsForRelation Set of State-
ment

Returns the Statements with Object and Predicate given
by Resource and Relation.

toMeStatements Set of State-
ment

Returns the first Statement with given Object.

treeSelectObjects Set of Object Calculates the closure for given Resource and Relation. ??

topoSelectObjects Set of Object ?

treeSelectSubjects Set of Object ?

decoratableNodes Set of Re-
source

?

11.1.7 Select Functions for Package

Function Return type Description

allReferencedPackages Package ?

allStatements Set of Statement Returns all the Statements in a Package.

allRequiredScopes Set of Statement ?

allAvailableRequiredScopes Set of Resource Scope ?

resourceByNameOrNull Resource Returns the Resource in the Package having a
given simple Name.

User Manual 176

 © 2017 Actifsource AG, Switzerland - all rights reserved.

11.1.8 Select Functions for Resource Scope

getScope Resource Scope Returns the Scope.

isRequired Set of Resource Scope ?

allResourcesInScope Unordered Set of Resource Returns all Resources reachable from a given
Resource Scope.

allReferencedResourcesInScope Unordered Set of Resource ?

classByName Java class Loads a Java class of given name.

classByNameOrNull Java class Loads a Java class of given name.

packagesInScope Set of Package ?

unreferencedResource Set of Resource with Pack-
age

?

types Set of Class Returns the direct and indirect Types of a
Resource.

11.1.9 Additional Select Functions

Function Return type Description

getScope Resource Scope Returns the Scope.

getRequiredScopes Set of Resource Scope ?

allRequiredScopes Set of Resource Scope ?

allAvailableRequiredScopes Set of Resource Scope ?

isRequired Set of Resource Scope ?

allResources Unordered Set of Resource Returns all Resources in Scope.

allResourcesInPackage Unordered Set of Resource Unordered Set of Resource

allResourcesInPackage2 Unordered Set of Resource
with Package

Returns all Resources in a Package.

allResourcesInPackages2 Unordered Set of Resource
with Package

Returns all Resources in a List of Packages.

allRootResourcesInPackage Unordered Set of Resource Returns all Resources residing directly in a
Package.

allStatements Set of Statement Returns all Statements.

resourceBySimpleNameOrNull Resource with Package Returns the Resource having a given simple
Name.

resourcesBySimpleName Set of Resource with Pack-
age

Returns the Resource having a given simple
Name.

resourceByFullNameOrNull Resource with Package Returns the Resource having a given full
Name.

resourcesByFullName Set of Resource with Pack-
age

Returns the Resource having a given full
Name.

packagesByName Set of Package Returns the Packages having a given Name.

subPackagesByName Set of Package Returns the Packages having a given Name,
including the Sub-Packages.

packagesByExpressions Iterable of Package ?

allPackages Iterable of Package ?

11.2 Update-Fassade

User Manual 177

 © 2017 Actifsource AG, Switzerland - all rights reserved.

12 Context Sensitive Help
In this section we will show how to set up the context sensitive help system. The Actifsource context sensitive

help is integrated into the Eclipse Platform help system.

As a very simple example, let us define a help system for the following meta-model. This example allows to

show help information about the Class A, B and BaseAB, and the respective instances A1 and B1.

First, we create the help file “ClassDocument.html” which contains all the help information and which defines

the link targets for the context sensitive help.

User Manual 178

 © 2017 Actifsource AG, Switzerland - all rights reserved.

12.1 Table of Contents
The table of contents (toc) contains a collection of topics for display inside the Eclipse help system. The topics

here unlike in the context sensitive help are not bound to a context. For the detailed information on the sup-

ported features (Topics, Link and Anchor), see the Eclipse documentation

Now we create a HelpSystem resource in Actifsource: “ExampleHelpSystem”. Let us add a table of contents

which has its contents statically defined as xml file: “StaticTableOfContents”. It has two properties:

• primary: If true: The table of contents is displayed as a book within the Eclipse help.

• file: The location of the toc xml file.

For editing the toc xml file, you can use the Eclipse specific editor, or edit it directly in an xml editor.

The toc xml file consist of a root xml element “toc” having an attribute “label” and containing nested “topic”

elements. A “topic” element has the two xml attributes:

• label: The label to display for the topic.

• href: The location of the html File. The link providing anchors.

Now we create a toc file (TableOfContentsFile.xml) with the following topics and nested topics.

User Manual 179

 © 2017 Actifsource AG, Switzerland - all rights reserved.

To open the Eclipse help system choose Help -> Help Contents. Select the ‘Actifsource Help Sample’ and expand

the topics and you will see the following.

User Manual 180

 © 2017 Actifsource AG, Switzerland - all rights reserved.

12.2 Help Context
Context sensitive help is a mechanism for linking a Resource to a specific help topic. For the detailed infor-

mation on the supported features (Context, Topics and Commands), see the Eclipse documentation.

The information, which defines the different contexts and how they are linked to a topic, is stored in a help

context xml file. When triggering the context sensitive help, the defined contexts are matched against the cur-

rently selected resource in the following order (most specific to least specific):

- Matching of the instance by its GUID (instance match)

- Matching of a resource by the GUID of its class (direct class match), and it super-classes (indirect class

match).

You can edit the help context xml file directly or you using the Eclipse specific editor. A context xml entry has

the two attributes:

• id: The GUID of the Resource to associate the help.

• merge: If true, also the topics of less specific contexts than this context are shown. If false, the topics

of less specific context matches are omitted.

A topic entry in the xml file has the attributes:

• label: The label displayed for the topic.

• href: The location of the html file. The link providing anchors.

Now we create a help context file (HelpContextfile.xml) with the following contexts and topics.

User Manual 181

 © 2017 Actifsource AG, Switzerland - all rights reserved.

 The content sensitive help can be opened by selecting a Resource via any Actifsource editor and pressing ‘F1’.

All related topics started from the selected Resource (A1) via his types (from specific to generic type) are

merged together. If only a single context matches the currently selected resource (setting the “merge” flag to

false), then the html content is immediately shown inside the Eclipse help view.

User Manual 182

 © 2017 Actifsource AG, Switzerland - all rights reserved.

13 Generic Import Wizard
In this section we will show how to import any file into a model.

As a very simple example, let us define a generic import wizard for the table-library meta-model. This example

allows importing tables directly into the table-library. Every table and element has a mandatory name and the

element also defines a mandatory id.

Generic Import Wizard

Property Description

name Defines the import wizard name.

version Defines the version from the import wizard.

publisher Defines the publisher from the import wizard.

File_extension Defines the extension of the source file.

description Defines the description inside the eclipse info page. Html tags are allowed.

info Defines the info inside the import wizard.

importLocation Defines the import location inside the project:

• GlobalImportType:
Import location is inside the workspace.

• PackageImportType:

User Manual 183

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Import location is inside a project package.

• ResourceImportType:
Import location is inside a resource. The property ‘filteClass’ can be
used to restrict the resource type.

aspect[ImportAspect] The import aspect defines the behavior of the import. The aspect interface is
defined in the class ‘IGenericImportWizardAspect.java’.

GenericImportWizardAspect.java

The generic import wizard aspect, defines only the function ‘importFile’ with the parameter ‘context’ and

‘imputStream’ from the source file. The functionality of the parameter ‘context’ is described in the table below.

IImportContext.java

Interface Return type Description

getFileName String Returns the name of the source file.

getReadJobExecutor IReadJobExecutor The read-job is used to read from the model by
Select-Facade.

getWriteJobExecutor IWriteJobExecutor The write-job is used to modify the model by Up-
date-Facade.

getImportType ImportType Returns the import-type ‘GlobalImportType’,
‘PackageImportType’ and ‘ResourceImportType’.

getPackage Package Returns the package of the target resource, only if
the import-type is ‘PackageImportType’ or ‘Re-
sourceImportType’’ else null.

getResouce INode Returns the target resource, only if the import-type
is ‘ResourceImportType’ else null.

putInfo Puts any information string to the user.

hasInfo Boolean Check if any information is available.

putError Puts any error string to the user. If any error oc-
curred the modification during the import is un-
done.

hasErrors Boolean Checks if any error is available.

incrementModifiedCount Increment statistic modification count.

incrementCreateCount Increment statistic creates count.

incrementDisposeCount Increment statistic disposes count.

incrementElementCount Increment statistic element count.

This feature supports the import of any files but you have to parse the input-stream by yourself. If you import

an xml-document, you have a prefabricated solution. Now we use this solution for the simple example.

User Manual 184

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Let’s define a simple table xml import aspect to import the xml into the table-library. To use the prefabricated

xml solution, you have to extend the aspect by ‘AbstractXMLImportwizardAspect’.

This solution expects only the root element handler. Any handlers have to implement the interface ‘IXMLEl-

ementHandler.java’. This interface is described in the table below.

IXMLElementHandler.java

Interface Return type Description

createElement INode Create and returns the resource correspond to the
xml-element.

setAttribute Sets any xml-attribute to the model.

closeElement Handles any operation if the end of the xml-
element has arrived.

parentElementClose Handles any operation if the end of the parent xml-
element has arrived.

setCharacters Handler xml text (<tag> text</tag>)

createSubElementHandler IXMLElementHandler Creates and returns a sub handler for the xml-sub
element.

For the simple example, we have to define three xml element handlers “RootXMLElementHandler”, “Table-

Handler” and “ElementHandler”.

SimpleTableXMLImportAspect.RootXMLElementHandler

User Manual 185

 © 2017 Actifsource AG, Switzerland - all rights reserved.

SimpleTableXMLImportAspect.TableHandler

SimpleTableXMLImportAspect. ElementHandler

The parameter ‘context’ in these functions is used to read or write to the model and to handle the import pro-

cess. This interface is described in the table below.

IXMLElementContext.java

Interface get Return type Description

getImportContext IImportContext Returns the import context.

getName String Returns the name of the xml-tag

getLocator Locator Returns the xml document position locator.

getResource INode Returns the resource created from the xml
element handler function ‘createElement’ or
null if the resource doesn’t exist.

getResourceNotNull INode Returns the resource created from the xml
element handler function ‘createElement’ or
throw an exception if the resource doesn’t
exist.

getParentResource INode Returns the parent resource created from the
parent xml element handler function ‘createEl-
ement’ or null if the parent resource doesn’t
exist.

getParentResourceNotNull INode Returns the parent resource created from the
parent xml element handler function ‘createEl-
ement’ or throw an exception if the parent
resource doesn’t exist.

User Manual 186

 © 2017 Actifsource AG, Switzerland - all rights reserved.

createException SAXException Create a sax parsing exception with document
location.

getOrCreateResourceByName INode Return a new or existing resource with the
corresponding name.

getOrCreateResourceByNameAndType INode Return a new or existing resource with the
corresponding name and type.

setOrUpdateReference Set or update the resource reference.

setOrUpdateStringProperty Set or update string property to the model.

setOrUpdateIntegerProperty Set or update integer property to the model.

setOrUpdateLongProperty Set or update long property to the model.

setOrUpdateBooleanProperty Set or update Boolean property to the model.

getMandatoryResurceByName Return an existing resource from the xml at-
tribute with the corresponding name or an
exception if the resource doesn’t exists.

getOptionalResurceByName Return an existing resource from the xml at-
tribute with the corresponding name or a null
if the resource doesn’t exists.

getMandatoryAttributeStringValue Return the value of the xml attribute as string
or an exception if the value doesn’t exists.

getOptionalAttributeStringValue Return the value of the xml attribute as string
or null if the value doesn’t exists.

getMandatoryAttributeIntegerValue Return the value of the xml attribute as integer
or an exception if the value doesn’t exists.

getOptionalAttributeIntegerValue Return the value of the xml attribute as integer
or null if the value doesn’t exists.

getMandatoryAttributeLongValue Return the value of the xml attribute as long or
an exception if the value doesn’t exists.

getOptionalAttributeLongValue Return the value of the xml attribute as long or
null if the value doesn’t exists.

getMandatoryAttributeBooleanValue Return the value of the xml attribute as Boole-
an or an exception if the value doesn’t exists.

getOptionalAttributeBooleanValue Return the value of the xml attribute as Boole-
an or null if the value doesn’t exists.

13.1 Import Wizard
Let’s import a xml-table file to verify the import. For example we use the xml-file ‘BoyBabyNames.xml’

BoyBabyNames.xml

You can start the import sequence via the context menu in the project explorer.

User Manual 187

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Select the generic import wizard to continue the import.

Select the simple table import wizard to continue the import

User Manual 188

 © 2017 Actifsource AG, Switzerland - all rights reserved.

Preselecting a package or resource in the project explorer will directly fill the target fields. Select the source

location file to complete the importing sequence.

After importing any errors and infos are shown in the info-Page

User Manual 189

 © 2017 Actifsource AG, Switzerland - all rights reserved.

If the importing is successful the table library is synchronized with the xml-file.

User Manual 190

 © 2017 Actifsource AG, Switzerland - all rights reserved.

14 Code Generator

14.1 Overview

Click on GUID

Eclipse Builder

Working with GCC

User Manual 191

 © 2017 Actifsource AG, Switzerland - all rights reserved.

15 Plugin Project

15.1 Overview

