The CIP Method: Component- and M odel-Based
Construction of Embedded Systems

Hugo Fierz

Computer Engineering and Networks Laboratory TIK
Swiss Federal Institute of Technology ETH
CH-8092 Ziirich, Switzerland
fierz@tik.ee.ethz.ch

Abstract. CIP is a model-based software development method for
embedded systems. The problem of constructing an embedded system is
decomposed into a functional and a connection problem. The functional
problem is solved by constructing a formal reactive behavioural model. A
CIP model consists of concurrent clusters of synchronously cooperating
extended state machines. The state machines of a cluster interact by multi-
cast events. State machines of different clusters can communicate through
asynchronous channels. The construction of CIP models is supported by the
CIP Tool, a graphical modelling framework with code generators that
transform CIP models into concurrently executable CIP components. The
connection problem consists of connecting generated CIP components to
the real environment. This problem is solved by means of techniques and
tools adapted to the technology of the interface devices. Construction of a
CIP model starts from the behaviour of the processes of the real
environment, leading to an operational specification of the system
behaviour in constructive steps. This approach allows stable interfaces of
CIP components to be specified at an early stage, thus supporting
concurrent development of their connection to the environment.

1. Introduction

The CIP method (Communicating Interacting Processes) presented in this paper is a
formal software development method for embedded systems. By ‘ embedded system’ we
mean any computer system used to control atechnical environment. Examples include
highly automated devices, industrial robots and computer controlled production
Processes.

CIP specifications are constructed with the CIP Tool? [1], a modelling framework
with verification functions and code generators that transform CIP models into exe-
cutable software components. The method and its tool have been used in many real

LCIP Tool® is a registered trademark. All graphic figures of model parts presented in this
paper have been generated from models created with CIP Tool®. Associated textual
descriptions such as condition definitions or condition allocations correspond to model
reports produced automatically.

Presented at the European Software Engineering Conference 1999 — ESEC 99,
Published in Lecture Notes on Computer Science Vol. 1687, Springer Verlag, Berlin.

projects. The benefit of a rigorous problem-oriented approach is an important
improvement of software quality, reflected by understandable system models, robust
and reliable software products and a considerable reduction of maintenance costs.

The starting point in the design of CIP was the JSD method (Jackson System
Development) [2], adopting the real world oriented modelling paradigm of this
approach. JSD treats dynamic information problems by means of concurrent
sequential processes, simulating a part of the real world and producing requested
information about it. CIP differs from JSD mainly in its modelling framework, which
is based on synchronously cooperating extended state machines rather than on
concurrent processes described by extended regular expressions (structograms).

The CIP method is based on the following devel opment concepts:

Problem Decomposition. The usual purpose of behavioural models in embedded
system development is to specify the functional system behaviour in subject-matter
terms. Such models, independent of technical interface concerns, are often called
essential models [3]. The connection of an implemented essential model to the real
environment represents a problem in its own right, demanding tools and techniques
adapted to the technology of the interface devices.

Model-Based Operational Specification. The functional behaviour of a CIP system is
specified by an operational model of cooperating extended state machines.
‘Operational’ means that the model is formally executable [4]. CIP combines
synchronous and asynchronous cooperation of system parts within the same model.
Synchronous cooperation, well known from real-time description techniques like
Statecharts [5], ESTEREL [6] or LUSTRE [7], is needed to model synchronous
propagation of internal interactions. Asynchronous cooperation on the other hand,
supported by parallel modelling languages like SDL [8], JSD [2] or ROOM [9], is
necessary to express concurrency.

Component-Based Construction by White Box Composition. CIP models are deve-
loped with the CIP Tool [1], a framework of graphic and text editors supporting full
coherence among various architectural and behavioural views. Models are constructed
by creating, composing and linking model components such as processes, channels,
messages, states and operations. Modelling by compositional construction perfectly
supports the problem-oriented construction process of the method, providing more
flexibility and intuition than language-based specification techniques.

Component-Based Implementation by Black Box Composition. CIP models are
transformed automatically into executable software components which are integrated
on one hand with components connecting to the environment, on the other hand with
system parts like technical data processing units or extensive algorithmic functions.
The main goal of software component technology is usually to construct systems by
means of reusable building blocks. Although reuse of embedded components is often
not possible because of the specific behaviour of the particular environment,
component composition is still of great value. Concurrent development and flexible
system integration is easier when system parts are constructed as software components
with stable interfaces.

Environment-Oriented Development. The development of a functional behavioural
model must start with a rigorous definition of the model boundary. The widely used
context schema of SDRTS [3] for example models the boundary by means of event
and data flows to and from the system. Although such boundary models allow the
development of the behavioural model to be based on a well-defined set of external
interaction points, they fail to express any behavioural relationships with the
environment. CIP starts the development by defining the set of valid interaction
sequences by means of a behavioural context model. This approach supports the
construction of robust and dependable systems because it incorporates a forma model
of the environment behaviour.

The main part of the paper starts in section 2 by describing how CIP tackles the
embedded system problem. Section 3 explains the architectural and behavioural
constructs used to build CIP models. Section 4 presents the environment-oriented
development process of the CIP method, illustrated by a simple but complete example
of a CIP model construction. Section 5 finally describes how generated software
components are connected to the environment.

2. CIP Application Area: Control Problems

An embedded system is a computer system which senses and controls a number of
external processes. The behaviour of the individual processes is partly autonomous
and partly reactive. In the case of physical processes the behaviour can be deduced
from physical properties. More complex processes are often already controlled by local
microprocessors. An operator driven man-machine interface is another source of
asynchronous influences on the system.

Two main problems are encountered when an embedded system is developed. The
first problem concerns the functionality of the system: to bring about the required
behaviour the embedded system to be constructed must react in a specific way to
subject-matter phenomena of the environment. The second problem concerns the
connection of environment and embedded system: the subject-matter phenomena
related in the functional problem solution must be detected and produced by
monitoring and controlling specific interface devices like sensors and actuators.

As a simple example we take an opening door where the door motor has to be
turned off when the door is fully open. The function of the system is simply to
produce the Motor Off action when the Opened event occurs. However, neither the
event Opened nor the action Motor Off are directly shared with the embedded system.
Instead the event Opened must be detected by means of a position sensor which is
connected to the embedded system by a shared binary variable; and the action
Motor Off must be produced by setting a binary variable of the motor actuator
appropriately.

The CIP method is based on a complete separation of the functional and the
connection problem. The functional problem is solved independently of the interface
devices by specifying a rigorous behavioural model. The CIP model is constructed
graphicaly with the CIP Tool and transformed automatically into concurrently
executable CIP units.

The construction of a CIP model is based on a virtual connection to the external
processes. The virtua interface of the external processes consists of collections of
events and actions designating instantaneous subject-matter phenomena occurring in
the environment. Events are phenomena initiated by the environment. Process events,
often called discrete events, are caused by the autonomous dynamics of external
processes. Continuous behaviour of external processes is captured by periodic
temporal events with associated state values (sampling). Actions are environment
phenomena caused by reactions of the embedded system. The virtual connection
transmits a corresponding message whenever an event has occurred or an action must
be produced.

¢ events
external || virtual ™ Cip
processes |, connection | | units
physical interaction actions
Sensors embedded
actuators physical connectors
connection
environment embedded system

Fig. 1. Conceptual embedded system architecture

The working connection between external processes and generated CIP units
consists of sensors and actuators connected to system modules called embedded
connectors. An embedded connector detects events by monitoring sensor phenomena,
and triggers its CIP unit with corresponding event messages. It receives action
messages from the CIP unit, and initiates appropriate actuator phenomena to produce
the corresponding actions in the environment.

In the door example, the reaction " Opened causes Motor Off" would be produced by
a CIP component while the monitoring and setting of the interface variables is done
by a separately constructed embedded connector.

The complete separation of the functional and the connection problem considerably
benefits the devel opment process since the two problems can be solved independently.
This is not just a question of reducing a large problem to two smaller ones, but of
disentangling two problem complexes belonging to different abstraction levels.

An important benefit of this problem separation appears for example when control
functions have to be validated. Because the developed software can rarely be tested
directly on the target system, it is necessary to use simulation models and specific test
beds. The CIP approach allows a functional solution to be partitioned in various ways
and corresponding software components to be generated that can be easily embedded
within various test environments.

The proposed problem decomposition has been elaborated by means of the notion
of problem frames recently introduced by Jackson [10]. The approach allowed us to
understand more deeply the generic structure of the embedded system problem and its
relation to the development process. Explicit discussion of the use of problem frames
for embedded systems is beyond the scope of this paper and will be presented in
another publication.

3. CIP Modds

The CIP meta-model has been defined on the basis of a compositional mathematical
formalism [11] developed for this purpose. The modelling tool has been designed as a
component framework based on an object model implementing the CIP meta-model.
Current research and development extends the modelling framework by tools allowing
CIP models to be checked against independently defined behavioura properties.

CIP models are constructed graphically by means of architectural composition, well
known as a basic paradigm of architecture description languages [12]: communication
and interaction among state machines is specified by interconnecting these
components by first-class connectors. A drawback of many synchronous real-time
languages is that interconnections are described only implicitly, thus proliferating
complex interaction dependencies. Furthermore, behavioural modelling is supported
by anovel hierarchical structure called master-dave hierarchy.

Clusters and Processes. A CIP model is composed of a set of asynchronously
cooperating clusters, each consisting of a number of synchronously cooperating state
machines termed processes. Formally a cluster represents a state machine with a
multi-dimensional state space: the state of a cluster is defined by the tuple of its
process states. Although clusters as well as processes represent parallel behavioural
entities, their composition semanticsis essentially different: clusters model concurrent
functional blocks of a system, while processes represent orthogonal components of a
cluster. Hierarchical composition structures based on a simple “part of” hierarchy
relation can of course be introduced at both levels.

Communication — Asynchronous Transmission of Messages. Processes
of different clusters communicate asynchronously with each other and with the
environment by means of channels. Communication is specified by a graphical net
model (fig. 2) in which channels are attached to process ports. Source and sink
channels model the virtual connection to the environment while interna channels are
part of the CIP model.

FlowControl aCluster
aChannel

‘ Operation } aProcess 74>©asink
|
\©<7 Manager *—QaSource
Q—% Vessel ‘ ‘ Pump ‘*—O Commands

VesselEvents | | PumpEvents Assistant

O

VesselActions PumpActions

‘ Controller

i

Fig. 2. Communication net of a CIP model

Channels model an active communication medium which retains the sequential order
of transmitted messages. Asynchronous communication in a CIP model means that
the write and the read action of a message transmission takes place in different cluster
transitions. Processes represent receptive behavioural entities which must accept
delivered messages at any time.

Interaction — Synchronous Pulse Transmission. The processes of a cluster
interact synchronously by means of multicast pulses. Pulses represent internally
transmitted events. The straight directed connectors of the interaction net (fig. 3)
define the pulse flow structure of a cluster. Every connector has an associated partial
function termed pulse translation which relates outpul ses of the sender to inpulses of
the receiver process. Rhombic connectors declare state inspection (see below).

A cluster is always activated by a channel message which leads to a state transition
of the receiving process. By emitting a pulse, the receiving processes can activate
further processes of the cluster, which can in turn activate other processes by pulses.
The chain reaction resulting from pulse transmission is not interruptible and defines a
single state transition of the entire cluster. Activated processes can also write
messages to their output channels.

‘ Controller ‘<—{ Operation ‘

I XQ
v | o |

Fig. 3. Interaction net

For models with multicast pulse transmissions the structure of the interaction net
does not sufficiently restrict the potential pulse transmission chains, as non-
deterministic process activations and cyclic transmission paths are in general possible.
The problem is well known from statecharts models. To ensure deterministic pulse
propagation, interaction is specified as sequential multicast. The outgoing interaction
connections of each process are therefore defined as atotally ordered set. If a process
emits a pulse, the receivers determined by the partial pulse translation function are
triggered sequentially in the specified cast order to cause subsequent interaction chains.
Thus cluster transitions represent well defined sequences of process activations. In
order to ensure bounded response times of system reactions, cyclic interaction paths
must be excluded. This problem is solved by the tool which does not allow the con-
struction of models with interaction sequences in which a process is triggered more
than once by the same inpul se.

The specification of process reactions and pulse interaction by means of transition
relations and pulse translation functions defines formally a deterministic cluster beha-
vioural model, from which all potential interaction sequences can be deduced. All po-
tentia interaction sequences can be viewed graphically as interaction trees by the tool.

State Inspection — Static Context Dependency within a Cluster. The
conditions of a state transition structure of a process are alowed to depend on the
states and variables of other processes of the same cluster. Read access to the data of a
process is called state inspection and takes place as in object oriented models via
access functions termed inquiries. By contrast to pulse transmission, where both
transmitter and receiver are activated, in the case of state inspection, only the
inspecting process is active. State inspection gives rise to additional dependencies
between processes which are declared graphically as rhombic connectors in the
interaction net (fig. 3). The arrows denote the data flow direction.

6

Processes — Extended Finite State Machines. Processes are modelled as
extended finite state machines. By means of state transition structures and operations
executed within transitions, functionality can be specified on two different levels of
abstraction.

The communication interface of a process is defined by one or more inports and
outports. A port is specified by the set of messages to be received or sent. Each inport
and outport is connected in the communication net to an incoming or outgoing
channel respectively. Interaction inputs and outputs on the other hand are defined by
two distinct sets of inpulses and outpul ses.

PROCESS Door 7] closing 37 1]

Closed close Inputisg
INPORT DoorEvents CISACk Gutpuiisg
MESSAGES Closed, Opened MotOff MotClose
2]
OUTPORT DoorActions oo inpulss
MESSAGES MotClose, MotOpen, outpulse

MotOpen apened

MotOff closed
1] 2]
INPULSES close, open open @Opened Q state
opnAck
OUTPULSES clsAck, opnAck

MotOpen MotOff
opening Legend

Fig. 4. Pure finite state machine

The transition structure depicted in figure 4 specifies the behaviour of the process
Door. Process states are represented by circles, transitions by labelled transition
boxes. The input messages Opened and Closed or the inpul ses open and close of the
process can activate a state transition. An input message for which the current state
has no outgoing transition causes a context error. An inpulse for which there is no
transition, on the other hand, isignored. In each transition an outpulse and a message
to each outport can be emitted.

To support data processing and algorithmic concerns CIP processes are specified as
extended state machines. The extension consists of static process variables, data types
for messages and pul ses, operations and conditions.

PROCESS Cashier 4Abi3(r)t
VARIABLES amount: int, price: int eét_)ortted
jec
INPORT EventPort)
L cashing
MESSAGES Coin: int, Abort 110
getMoney
OUTPORT ActionPort
MESSAGES Eject: int, OpenSlot OpenSlot
3 [0 2 [0
INPULSES getMoney: int . Coi‘n Coi‘n
OUTPULSES aborted, paid: int 2?:;[
OPERATIONS idle
init { SELF. anobunt = 0; SELF.price = IN;} CONDITION ALLOCATION
incr { SELF. amount = SELF. anpunt + IN;} 2 notEnough, 3 ELSE_
CONDITIONS OPERATION ALLOCATION

not Enough (SELF. ambunt < SELF. price) Linit, 2 incr, 3 change, report, 4....

Fig. 5. Extended finite state machine

7

The Coin message of the process Cashier (fig. 5) for instance carries an integer value
representing the value of the inserted coin. Operations all ocated to transitions are used
to update the inserted amount and to calculate the change. When the process isin the
cashing state - shown in grey - there are two potential transitions for the input
message Coin. Associated conditions render the process behaviour deterministic. Such
conditions can depend on the input data and the values of the local process variables,
but also, by state inspection, on the states and variables of other processes of the
same cluster.

Variables, data types, operations and conditions are formulated in the programming
language of the generated code. From the high level modelling point of view these
constructs represent primitives which add computational power to the pure models.
The specified code constructs are incorporated inline in the generated code. From a
theoretical point of view it would be more elegant to use a functional specification
language, but in practice the value of this pragmatic approach based on the
implementation language has been clearly confirmed: it permits easy use of functions,
data types and object classes from existing libraries.

The Door and Cashier processes presented react to event messages indicating
discrete state changes of an external process. Control of continuous processes on the
other hand is based on periodic sampling of the continuous process states. Figure 6
shows the transition structure of a process regulating the temperature of a liquid by
means of a heater with continuously variable heating power. The process reacts to the
periodically occurring Sample message giving the sampled liquid temperature. Control
algorithms are allocated to transitions. Feedback control is performed by means of the
data carried by the SetHeater output message.

5 [0 holding_TW 510

stop m Sample
SetHeater I SetHeater

110 4]0

Sample S I

p ° ample
SetHeater . SetHeater
idle

2 J0 3 [0
start Sample
SetHeater U SetHeater

heatingUp

Fig. 6. Time driven state machine

Master-Slave Hierarchies — Behavioural Structuring. The state transition
structure of a CIP process specifies how the process must react to inputs by state
changes and generated outputs. Often such a behaviour becomes quite complex due to
inputs which must influence the full future behaviour of the process. An alarm
message, for instance, must lead to behaviour different from the normal case until the
alarm is reset. The resulting transition structure will then represent a kind of
superposition of the structures for the normal and the alarm case.

To disentangle such implicit superpositions the full behaviour of a process is
modelled by a number of aternative modes. Each mode is specified graphically by a
state transition diagram, based on the states, ports and pulses of the process.

8

MODE normal MODE shutting

7] closing 3] 7] closing 3]
Closed close Closed shutUp
clsAck clsAck
MotOff MotClose MotOff MotClose
5] 5]
open shutUp
closed MotOpen opened closed MotClose opened

1] 2]
open Opened
opnAck

MotOpen i MotOff .
opening N opening

Fig. 7. Two modes of the Door process

Figure 7 shows an elaboration of the Door process (fig. 4) by an additional shutting
mode. This mode describes an aternative behaviour of the process, usable when an
alarm or error condition occurs.

The mode changes of a process can be induced by one or more processes designated
as master. The master-slave relation of a cluster is specified by a master-slave graph
(fig. 8). Master-slave connections are represented by triangles which are connected at
the bottom angle to a slave and at the top side to one or more masters. The graph is
restricted to be acyclic in order to define a hierarchical structure.

‘ aMaster ‘ ‘ErrorHandIer‘ ‘ Alarm ‘

<= \{
Controller ‘ ‘ Boiler ‘

Y

‘ OilFlow H Pump H Blower H Ignition ‘

Fig. 8. Master-slave hierarchy graph

The levels indicated in the graph of figure 8 have no forma meaning. Levelling is
merely used informally to group processes interacting on a common level of
abstraction. Usually not all processes of a cluster are involved in the hierarchical
structure.

The behavioural semantics of master-dave relationsis defined as follows:

The active mode of a lave is determined by the current states of its masters.
The association of master states and slave modesiis specified by a corresponding mode
setting table which defines atotal function from the Cartesian product of master states
to the modes of the dave.

Thus a mode change of a slave can occur whenever one of its masters changes its
state. Even when the Door process of figure 7 is in the closed state in the normal
mode, a master can induce a switch to the shutting mode. The effect is simply that the
door will remain closed when an open pulse is sent to the process. If for functional
reasons a mode change should not occur in certain states, it must be prevented by
means of explicitly modelled interaction between dave and master.

A dlave can itself initiate a mode change by sending a pulse to one of its masters.
This pattern is used typically when an error is recognised by a slave and its master
must then be triggered to induce a change to an error mode in other slaves as well.

9

It isimportant to note that a change of mode does not affect the current state of a
dlave, which can change only when atransition in the active mode is triggered by an
input. The rule reflects the fact that a change of mode does not alter the history of
basic interactions.

CIP modes differ essentially from the well-known notion of superstates or serial
modes of hierarchical state machine models [5, 13]. The modes of a CIP process are
defined on the same set of states, while superstates describe exclusive behaviours
based on digjoint sets of states. Thus the history expressed by the current states of the
lower levels cannot be retained when the pertaining superstate is changed.

A further difference to hierarchical state machinesliesin the nature of the hierarchy
relation. A master-slave hierarchy relation is a set of associated state machines,
whereas hierarchical state machines represent compositions based on nested state sets.

Process Arrays — Static Replication of Processes. Replicated processes are
modelled as multidimensional process arrays. The multiplicities of the singular array
dimensions are defined by abstract index types. Using common index types for dif-
ferent process arrays allows modelling of finite relations among process arrays,
usually expressed by means of entity-relationship diagrams.

4. Domain-oriented Development — The TCS Case Study

An operational behavioural model provides a well defined level of abstraction. In
addition to these "guard rails", the CIP method adopts the concept of environment-
oriented behavioural modelling from the JSD method. This concept bases the
development of control systems on a realised model of the environment inside the
system in order to capture the essential behaviour of the processes to be controlled.
CIP models are therefore constructed in a sequence of three steps:

1. Specification of the virtual real world interface
2. Establishing a behavioural context model
3. Construction of control functions

Environment Environment CIP Model Environment CIP Model

Ug Dg. Ug

) Siie >o- I R R (R

1. Events & Actions 2. Context Model 3. Complete Model

Fig. 9. Development steps

The virtual real word interface is specified by collections of events and actions used to
bring about the required functional behaviour. The context model is the first part of
the CIP model to be constructed. It consists of source and sink channels attached to
CIP processes that consume event messages and produce action messages. The
transition structures of these processes represent protocols of the virtual
communication with the environment. In the third step the CIP model is completed
by creating function processes which interact and communicate with the processes of
the established context model.

10

4.1 Problem Statement of the TCS Case Study

The TCS (TransportControlSystem) example illustrates how a CIP model is
developed and how a simple master-slave hierarchy works. The resulting cluster
represents an executable solution of the stated problem. The algorithmic requirements
aretrivial, so the model consists of pure state machines only.

Plant description. The plant to be .
controlled comprises a conveyor moving [\Scaner Switch
objects in one direction, a scanner ser-

ving to identify loaded objects and a Loading Sensor

switch alowing the operator to enable @ — @
and disable object scanning. A loading Conveyor
sensor at the front end of the conveyor Fig. 18. TCS plant

detects loaded objects.

Requirements. The system starts its function when the first object is loaded. When
the conveyor is not loaded for 30 seconds, its motor is to be turned off. Two modes of
operation are required. If the switch is set off, the started conveyor moves conti-
nuously and the scanner is not activated. If the switch is set on, the conveyor must
stop when an object is|oaded, the scanner is activated, and the conveyor starts moving
again when the scanner indicates that scanning is compl ete.

4.2 Virtual Real World Interface: Events and Actions

In the first step a virtual interface to the environment is specified by identifying
events to be detected and actions to be produced by the embedded system. Events and
actions designate instantaneously occurring subject-matter phenomena of the
environment.

TCS — Virtual Real World Interface

Event List

On / Off the switch is set on / off

Load / Free an object is loaded / is moved away from the loading place
Scanned scanning is completed

Action List

MotOn / MotOff | turning the conveyor motor on / off

Scan activating the scanner

Fig. 11. Event and action lists

4.3 Behavioural Context Model: Channels and Interface Processes

The purpose of the context model is to establish the interface processes of the CIP
model and to connect them virtually to the environment. The interface processes are
deduced from descriptions and process models of the environment. They receive event

11

messages and produce action messages through appropriately specified source and sink
channels. The state transition structures of the interface processes describe the valid
sequences of received event and produced action messages. Thus the context model
formally describes the behaviour of the individual external processes, seen from the
CIP model.

The channels of the context model represent a virtual connection to the
environment. The event and action messages of these channels must correspond to the
events and actions of the virtual real world interface. These channels are al'so used as
the interface model for the CIP components to be generated later on as described in
section 5.

TCS — Context Model
COMMUNICATION NET InterfaceChannels

TransportCluster CHANNEL SwitchEvt MESSAGES Off, On
_ CHANNEL ScanEvt MESSAGES Scanned
SwitchEvt . CHANNEL ScanAct MESSAGES Scan
s | seamer | N CHANNEL ConvEvt MESSAGES Free, Load
7 CHANNEL ConvAct MESSAGES MotOff, MotOn
ConvEvt ConvAct

PROCESS Switch PROCESS Scanner

2]

Off Scanned |
on scanning
1]
On

|

|

Scan

off ready
PROCESS Conveyor
MODE ongoing MODE stepped
loadedStopped loadedMoving loadedStopped 27 loadedMoving
Q MotOn
3] 5] 4] 1] [4
Load Load Free Load Load Free
MotOn MotOff
71 71
[}
idle MotOff moving idle MotOff moving

Fig. 12. Context model specification

12

The incomplete transition structures of the preliminary independent interface processes
must be completed in the control function step. Modelling interface processes means
understanding the behaviour of the external processes; but it also means anticipating
the way they will be controlled when the system is completed. The interface
behaviour of the Conveyor process, for example, has aready been defined by the two
modes ongoing and stepped, corresponding to the modes of operation of the required
system function.

4.4 Construction of Control Functions

The interface processes are grouped into asynchronous clusters. The partition into
clusters determines how the system can be implemented later on by concurrently
running CIP components. A possible reason to refine the initial clustering is
modularisation: because of their asynchronous behaviour, clusters represent very
weakly coupled functional blocks, well suited to development and validation by
different members of the devel opment team.

To bring about the required behaviour of the environment, function processes are
created and connected appropriately with the established interface processes. The
primary functionality of the system is first developed, based on the normal behaviour
defined by the model processes. To permit reaction to unexpected events, the interface
processes concerned must usually be extended by error modes; also, additional
supervisor and error handling processes must be introduced.

TCS — Complete Model

The CIP model of the simple case study consists of one cluster only. The function
process Controller controls the cooperation of the Conveyor and the Scanner
processes. The required modes of operation are modelled by corresponding modes of
the Controller. The current state of the Switch master process determines the active
mode of the Controller and the Conveyor process. The ongoing mode of the Conveyor
interface process has been extended by transition 2; the transition is necessary because
the switch can be set off even when the conveyor is stopped for scanning. The
Controller process uses a timer supported by the CIP Tool; provision of such timers
isaform of ‘modelling sugar’.

Remark. The corner marks of a process box indicate external input or output respectively: top right:
channel input, top left: timer input, bottom right: channel output.

CLUSTER TransportControl

INTERACTION NET PULSE TRANSLATIONS
. . Controller.move -> Conveyor.move
‘ Controller ‘ ‘ Switeh ‘ Controller.stop -> Conveyor.stop
I \ Controller.scan -> Scanner.scan
‘ Conveyor ‘ ‘ Scanner ‘ Conveyor.loaded -> Controller.loaded
Scanner.scanned -> Controller.scanned

The cast order specification istrivia in this simple example and thus omitted.

13

MASTER-SLAVE GRAPH

T 2

v
Controller ‘ ‘ Conveyor
4

~

Scanner

4

MODE SETTING Conveyor

MODE SETTING Controller

MASTER Switch MASTER Switch
STATES | off on STATES | off on
MODES | ongoing stepped MODES | freeLoad scannedLoad
PROCESS Switch PROCESS Scanner
2] 2]
Off Scanned
scanned
on scanning
1] 1]
° On ° scan
off ready Scan
PROCESS Conveyor
MODE ongoing MODE stepped
loadedStopped 27 loadedMoving loadedStopped 7 loadedMoving
@move move
MotOn [MotOn |
3] 51 4] . 1] 6] 4]
Load Load Free Load Load) Free)
loaded loaded loaded loaded
MotOn Motoff
7 1 7]
stop stop
idle Motoff | moving idle Motoff moving
PROCESS Controller
MODE freeLoad MODE scannedLoad
scanning 2] T 3] T scanning 2] T
i : scanned loaded scanned Legend:
move move
11 T
1] T 1] 3] S
loaded loaded loaded set timer
scan scan
s moving moving 2] S
4] 4]
° "TIMEUP_ TIMEUP_
stop stop stop timer
idle idle

Fig. 13. Complete model specification

14

The model can be animated by entering event messages or the TIMEUP_ trigger. The
following trace describes five cluster transitions of a particular animation:

PROCESS MODE PRESTATE INPUT POSTSTATE OUTPUT
Conveyor | ongoing idle Load loadedMoving | loaded, MotOn
Controller | freeLoad idle loaded moving T

Switch - ‘ off |On ‘ on ‘

Conveyor | ongoing POSTMODE stepped

Controller | freeLoad POSTMODE scannedLoading

Conveyor | stepped ‘ loadedMoving | Free ‘ moving ‘

Conveyor | stepped moving Load loadedStopped | loaded, MotOff
Controller | scannedLoad moving loaded scanning scan, S
Scanner - ready scan scanning Scan
Scanner - scanning Scanned ready scanned
Controller | scannedLoad scanning scanned moving move, T
Conveyor | stepped loadedStopped | move loadedMoving | MotOn

Fig. 14. Animation trace: five cluster transitions

5.5 More about Events and Actions

The elaboration of event and action collections represents a crucial development step
because it determines the level of abstraction used to solve the functional problem. On
the one hand, the collected events and actions must suffice to bring about the required
behaviour of the environment. On the other hand, the feasibility of the connection
must be ensured by verifying that all events can be recognised and all actions can be
produced by means of the available interface devices.

Events and actions can have attributes which are transmitted as data of the
corresponding channel messages. An event attribute describes a circumstance of an
occurring event: for example, the bar code read by a scanner or the parameters of an
operator command. An action attribute describes a circumstance to be brought about
when the action is performed, such as the position of an opened valve.

Events are classified into process events and temporal events. Process events are
caused by the autonomous dynamics of external processes, while temporal events
occur at prescribed pointsin time. In general, a process event is related to a discrete
change of the process. Discrete states often denote a whole range of external process
states, thus representing abstractions essential for the required functional behaviour.
Examples are the level ranges of a liquid in a vessel, or set of ready states of a
complex device. Continuous states must be monitored by sampling events that
capture the behaviour of continuous processes. Sampling events are periodically
occurring temporal events whose attributes are the sampled process states. Similarly,
the embedded system influences continuous processes by repeated production of
attributed actions.

15

5. Component-Based | mplementation of CIP Models

For implementation of a CIP model the set of clusters is partitioned into CIP units.
Each unit can be transformed automatically into a software component, executable in
a concurrent thread of the implemented system. The code for a CIP unit consists of a
CIP shell and a CIP machine, and is produced in two individual generation steps.

CIP
N
gggeerated HJ{. machine o

generated ‘ i”p”tl-!H-H!-l CIP shell I"+“'Ioutput

code

user written | event embedded call
code extractor connector backs
I((j)r‘i':'/é?\slel ‘ process and communication interface ‘

f o il

. external internal
environment processes communication

Fig. 15. Implementation of a CIP unit

The CIP shell represents the interface of the CIP unit: it consists of two linear
structures of function pointers, one for the incoming and one for the outgoing
channels. The CIP shell code is generated from the channel specifications only, and so
isindependent of the modelled clusters.

The CIP machine is a passive object implementing the reactive behaviour of the
CIP unit; it is activated by channel function calls through the input shell. Every call
triggers a cluster transition from which channel functions are called through the
output shell.

Partitioning the model creates additional connection problems due to the channels
interconnecting the CIP units. Thus the task of constructing an active embedded
connector is twofold. On the one hand, a subset of the controlled processes must be
connected to the CIP machine: these connections correspond to the source and sink
channels of the CIP unit. The implementation of this part of the connection demands
tools and techniques suited to the technology of the interface devices. Communication
between CIP units, on the other hand, can usually be implemented by means of
standard transmission techniques based on field bus systems or serial connections.

Because of the cooperation of parallel entities modelled within CIP models, thereis
no need to implement conceptual parallelism by means of multi-tasking. Only one or
very few CIP units are usually implemented on the same processor. Task scheduling
and interrupt handling are thus reduced to hardware interface functions and background
services[14].

The environment-oriented development process of the CIP method allows the
various CIP shells to be modelled at an early stage. The tool supports locking of

16

these interface specifications for extended periods. The generated shell code serves as
semi-rigid joints among CIP machines and embedded connectors. Thus, once a CIP
shell is defined, the associated CIP machine model and its embedded connector can be
developed concurrently. The concept has been proven in a number of industrial and
academic projects, where different partitions of the same CIP model had to be
connected to simulation models, to test beds for specific system parts, and to the rea
environment of the final target system. In the development of a hybrid car, even the
code for the connector has been generated from formal connector descriptions[15].

6. Summary

The CIP method is tailored to control problems typically encountered in the
development of embedded systems. Identifying the characteristic difficulties of this
problem class, the method offers suitable development concepts and modelling
techniques to promote system development based on engineering activities.

A central difficulty in the development of embedded systems results from the need
to monitor and control real world phenomena by means of specific interface devices.
The general embedded system problem is therefore decomposed into a functional
problem to be solved by means of formal behavioural models, and a connection
problem demanding devel opment techniques adapted to the technology of the interface
devices. By stabilising dependencies at an early stage, the resulting development
process allows the two problems to be solved independently.

Most reactive behavioural models support either synchronous or asynchronous
cooperation of behavioural entities. In order to support internal synchronous
interaction propagation as well as flexible distributed implementation of system parts,
the CIP method combines both cooperation paradigms within the same model. CIP
models consist of asynchronous clusters of processes that are synchronously
cooperating extended state machines.

In order to make interaction dependencies among processes explicit CIP models are
constructed by means of architectural composition. However, the problem of
conflicting and unbounded internal interaction can be solved only by restricting the set
of possible interaction paths. CIP therefore requires the control flow of interaction to
be specified by process cascades, resulting in deterministic behavioural models with
bounded response times.

Behavioural structuring is supported by a novel hierarchical structure: the master-
slave hierarchy. The hierarchical structure is based on master processes which induce
high level behaviour changes in designated slave processes. The problem-oriented hier-
archy relation is well suited to express powerful behavioural abstractions. This con-
cept has proved much more flexible than rigid nesting of transition structures.

Control functions of embedded systems must maintain an ongoing behavioural
relationship with the controlled external processes. The model construction process
therefore starts by developing a behavioural context model that defines the legal
histories of external interactions. The full functional solution is constructed in further
development steps where function processes are added and connected to the context
model.

17

The integration of the CIP code is based on component technology. Various
configurations of generated software components can be connected to interface
modules and components supporting other concerns such as validation and simulation.
The resulting flexibility in building executable system parts becomes crucial when
developed systems have to be validated in various test environments.

Acknowledgements

I would like to thank Michael Jackson for his comments and suggestions that hel ped
in improving this paper, especially concerning the area of problem frames. Thanks
also to Hansruedi Miller for his excellent work on the CIP Tool and to Hans Otto
Trutmann for his constructive ideas based on real project experiences.

References

1. CIP Tool® - User Manual (1995-1999). CIP System AG, Solothurn, Switzerland.
Internet: http://www.ciptool.ch

2. Cameron J. R. (ed.): JSP and JSD: The Jackson Approach to Software Development.
IEEE Computer Society Press (1989)

3. Ward. P. T., Méllor. J. M.: Structured Development for Real-Time Systems. Y ourdon
Press, Prentice-Hall, Englewood Cliffs, New Jersey (1985)

4. Zave P.: The Operational Approach versus the Conventional Approach to Software
Development. Comm. ACM, Vol. 27 No. 2. (1984) 104-118

5. Harel D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, Vol. 8. (1987) 231-274

6. Berry G, Gontier G.: The ESTEREL Synchronous Programming Language: Design,
Semantics, Implementation. Sci. of Computer Programming, Vol. 19 (1992) 87-152

7. Caspi P, Pilaud D., Halbwachs N., Plaice J. A.: LUSTRE: A declarative language for
programming synchronous systems. In: Fourteenth Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, Munich. (1987) 178-188

8. Faergemand O. (ed.): SDL '93: Using Objects. Proceedings of the 6th SDL Forum.
North-Holland (1993)

9. Sdlic B., Gullekson G., Ward P. T.: Real-Time Object-Oriented Modeling. John Wiley
& Sons (1994)

10. Jackson M. A.: Problem Analysis Using Small Problem Frames. To appear in South
African Computer Journal special issue for WOFACS' 98. (1999)

11. Fierz H.: SCSM - Synchronous Composition of Sequential Machines. Internal Report
No. 14. Computer Engineering and Networks Laboratory, ETH Zirich (1994)

12. Medvidovic N., Taylor R.N.: A Framework for Classifying and Comparing
Architecture Description Languages. In: Proc. ESEC/FSE '97, Lecture Notes in
Computer Science, Vol. 1301. Springer-Verlag Berlin (1997) 60-76.

13. Paynter S.: Real-time Mode-Machines. In: Jonsson J., Parrow J. (eds.): Formal
Techniques for Real-Time and Fault Tolerance (FTRTFT). LNCS Vol. 1135. Springer
Verlag Berlin (1996) 90-109

14. Trutmann HO.: Well-Behaved Applications Allow for More Efficient Scheduling. 24th
IFAC/IFIP Workshop on Real-Time Programming. Dagstuhl, Saarland (1999) 69-74

15. Trutmann HO.: Generation of Embedded Control Systems. 23rd IFAC/IFIP Workshop
on Real Time Programming, WRTP 98, Shantou, P.R. China (1998) 99-104

18

