

Actifsource
Language Workbench Challenge 2011

This paper shows how the problems of the Language Workbench Challenge 2011 are solved with Actifsource.
The tasks of the LWC11 are described in the assignments at http://www.languageworkbenches.net. Further
information about Actifsource can be found at http://www.actifsource.com.

Language Workbench Comparison 2011 - Actifsource Page 1/17

LWC11

Phase 0 - Basics
This phase is intended to demonstrate basic language design, including IDE support (code completion, syntax

coloring, outlines, etc).

Actifsource is implemented as Plugin to the Eclipse IDE and fully integrated into this environment.

Language Workbench Comparison 2011 - Actifsource Page 2/17

0.1 Simple (structural) DSL without any fancy expression language or such.
The meta-model is created straight-forward in the graphical Class Diagram editor:

Using the New Class and Relation tool, objects are created by just clicking into the diagram area and

choosing the desired type in a dialog.

Ctrl+Click on a diagram element shows the respective model element in the Resource editor.

Language Workbench Comparison 2011 - Actifsource Page 3/17

The following elements are created:

Type has a (unique) name, and no other properties. It cannot be instantiated.

PrimitiveType is a concrete subtype of Type with no other properties than the inherited name.

Entity is also a concrete subtype of Type. It has a property property which points to the type Property, and

the name it inherits from Type.

Property has a property type, which points to Type. The Type is not owned but shared among all properties,

so type is only a UseRelation, not an OwnRelation.

Language Workbench Comparison 2011 - Actifsource Page 4/17

Users of the Enterprise Edition can create the model itself in a graphical Domain Diagram editor:

The following elements are created – either by the diagram editor or by hand:

Language Workbench Comparison 2011 - Actifsource Page 5/17

0.2 Code generation to GPL such as Java, C#, C++ or XML
Code is generated using templates.

There is no syntax needed to access the model elements – model elements can be selected using the Eclipse

QuickAssist feature (Ctrl+Space) as shown below:

The generated Java file is shown in the common Eclipse Java editor (or the editor, that is registered for the

generated file type).

Language Workbench Comparison 2011 - Actifsource Page 6/17

0.3 Simple constraint checks such as name-uniqueness
Name-uniqueness is already checked, if your class extends the built-in class NamedResource, which is the

regular case.

If you are using anonymous classes, that only extend Resource, it is necessary to write a

ResourceValidationAspect in Java, which checks, whether an object is conflicting and gives some error

messages.

Language Workbench Comparison 2011 - Actifsource Page 7/17

For the case, that the referenced object is not only a Literal but a Resource, the uniqueness can by specified

by setting the cardinality of an association to 1 resp. 0..1.

0.4 Show how to break down a (large) model into several parts, while still cross-

referencing between the parts
In Actifsource, every aggregate structure is saved in its own file. References are handled with globally unique

identifiers (GUIDs). It is even possible to save the structure in different projects, while still referencing

resources from another project.

There can be different visualizations of the model referring to the same model elements. Each of them can

contain a subset of elements which it is supposed to visualize.

Language Workbench Comparison 2011 - Actifsource Page 8/17

Phase 1 - Advanced
This phase demonstrates advanced features not necessarily available to the same extent in every LWB.

1.1 Show the integration of several languages
There is no instatiation of domain objects provided. As a workaround for instantiation, the properties of the

model can be decorated with values.

The following meta-model shows how it is done.

There is a new type EntityInstance which refers via the property entity to the Entity object.

Language Workbench Comparison 2011 - Actifsource Page 9/17

The value property of EntityInstance is a decorates every property of the Entity with a Value.

Value is the abstract type for EntityInstance, StringValue and DateValue.

The property type will be an alias for the relation to the decorated object.

Language Workbench Comparison 2011 - Actifsource Page 10/17

StingValue and DateValue are implemented as Resources encapsulating the string literals and date literals.

Language Workbench Comparison 2011 - Actifsource Page 11/17

The instantiated object looks as follows:

The types of the instances are not checked – that would require the writing of a ResourceValidationAspect.

1.2 Demonstrate how to implement runtime type systems
See: 1.1 – Actifsource does not support runtime type systems.

Language Workbench Comparison 2011 - Actifsource Page 12/17

1.3 Show how to do a model-to-model transformation
There is no model-to-model transformation provided in Actifsource. There are only transformations resulting

in a text and are defined in a template.

However, it is possible to integrate Java functions (as described in 1.5) as an abstraction layer that allow to

navigate and iterate over the model as if it was a transformed model.

1.4 Some kind of visibility/namespaces/scoping for references
In Actifsource, the package name is the path to the folder which the resource is saved in. It is arbitrary for

non-aggregated resources. Aggregated resources have the same package as their owner.

There is no concept of namespace - resources are referenced by their GUID.

Language Workbench Comparison 2011 - Actifsource Page 13/17

1.5 Integrating manually written code (again in Java, C# or C++)
User-defined functions are written in Java and can be attached to any model element.

The functions are declared in a FunctionSpace resource, so a Java class is generated out of the declarations.

The generated Java file contains so-called Protected Regions in which we can fill in the user code and which

will be preserved upon generation.

Language Workbench Comparison 2011 - Actifsource Page 14/17

1.6 Multiple generators
The Actifsource Template editor is not restricted to any language. It can generate any textual language

desired.

Instead of Java code, we can also generate e.g. an XML schema definition as seen below:

This will be the generated file:

Language Workbench Comparison 2011 - Actifsource Page 15/17

Phase 2 - Non-Functional
Phase 2 is intended to show a couple of non-functional properties of the LWB. The task outlined below does

not elaborate on how to do this.

2.1 How to evolve the DSL without breaking existing models
If a extension to the model is needed, without touching the model itself, then decorations are the means of

choice.

As an example we will add a property persistent to Entity, without touching the model we have created.

First, there is a path to the resources needed, we want to decorate. In our case, we have to add a resource

which has a UseRelation to the entities, e.g. a type System.

Second, we add a DecoratingRelation which decorates the given path to the entities.

Language Workbench Comparison 2011 - Actifsource Page 16/17

Finally, we create a new type for the new property, and set it as range of the DecoratingRelation.

In an instance of the new System type, there is an item for every entity, so we can set the new property.

Language Workbench Comparison 2011 - Actifsource Page 17/17

2.2 How to work with the models efficiently in the team
All Actifsource resources are saved as XML files together with the generated artifacts in the source control

system of the user. Changes can be visualized in the editor and merged as desired.

2.3 Demonstrate Scalability of the tools

Phase 3 - Freestyle
Every LWB has its own special "cool features". In phase three we want the participants to show off these

features. Please make sure, though, that the features are built on top of the task described below, if possible.

Actifsource does not require the knowledge of a new syntax: The model elements are selected using

QuickAssist and are displayed graphically.

The format of the generated code can be any textual format. Since there are no template keywords, the

template already looks very similar to the generated code.

